MA 213 Worksheet #11 Section 14.5 2/19/19

- **1** Use the Chain Rule to find dz/dt. 14.5.1 $z = xy^3 - x^2y$ $x = t^2 + 1$ $y = t^2 - 1$ 14.5.3 $z = \sin(x)\cos(y)$ $x = \sqrt{t}$ y = 1/t
- **2** 14.5.11 Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$. $z = e^r \cos(\theta)$ r = st $\theta = \sqrt{s^2 + t^2}$
- **3** 14.5.15 Suppose f is a differentiable function of x and y, and $g(u, v) = f(e^u + \sin(v), e^u + \cos(v))$. Use the table of values to calculate $g_u(0, 0)$ and $g_v(0, 0)$.

	f	g	f_x	f_y
(0, 0)	3	6	4	8
(1,2)	6	3	2	5

- **4** 14.5.23 Use the Chain Rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when r = 2, $\theta = \pi/2$. w = xy + yz + zx $x = r\cos(\theta)$ $y = r\sin(\theta)$ $z = r\theta$
- **5** Find $\partial z/\partial x$ and $\partial z/\partial y$ (assuming z is implicitly a function of x and y). 14.5.31 $x^2 + 2y^2 + 3z^2 = 1$ 14.5.33 $e^z = xyz$
- **6** 14.5.39 Due to strange and difficult-to-explain circumstances, the length ℓ , width w, and height h of a box change with time. At a certain instant the dimensions are $\ell = 1$ m and w = h = 2 m, and ℓ and w are increasing at a rate of 2 m/s while h is decreasing at a rate of 3 m/s. At that instant find the rates at which the following quantities are changing.
 - (a) The volume
 - (b) The surface area
 - (c) The length of a diagonal