MA 213 Worksheet \#12

Sections 14.6-14.7
$2 / 21 / 19$

1 14.6.10 $f(x, y, z)=y^{2} e^{x y z}, \quad P(0,1,-1), \quad \mathbf{u}=\left\langle\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right\rangle$
(a) Find the gradient of f.
(b) Evaluate the gradient at the point P.
(c) Find the rate of change of f at P in the direction of the vector \mathbf{u}.

2 Find the directional derivative of the function at the given point in the direction of vector \mathbf{v}. 14.6.13 $g(s, t)=s \sqrt{t}, \quad(2,4), \quad \mathbf{v}=2 \mathbf{i}-\mathbf{j}$
14.6.15 $f(x, y, z)=x^{2} y+y^{2} z, \quad(1,2,3), \quad \mathbf{v}=\langle 2,-1,2\rangle$

3 14.6.33 Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z)=5 x^{2}-3 x y+x y z$.
(a) Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $\mathbf{v}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) In which direction does V change most rapidly at P ?
(c) What is the maximum rate of change at P ?

4 Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specific point.
14.6.42 $x=y^{2}+z^{2}+1$
14.6.44 $x y+y z+z x=5, \quad(1,2,1)$

5 Find the local maximum and minimum values and saddle point(s) of the function.
14.7.5: $f(x, y)=x^{2}+x y+y^{2}+y$
14.7.7: $f(x, y)=(x-y)(1-x y)$
14.7.15: $f(x, y)=e^{x} \cos y$

6 Find the local maximum and minimum values and saddle point(s) of the function precisely, using calculus.
14.7.23: $f(x, y)=x^{2}+y^{2}+x^{-2} y^{-2}$
14.7.25: $f(x, y)=\sin x+\sin y+\sin (x+y), \quad 0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi$

