MA 213 Worksheet \#13

Section 14.7-14.8
02/26/2019

1 14.7.33 Find the absolute maximum and minimum values of $f(x, y)=x^{2}+y^{2}+x^{2} y+4$ on the set $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$.

2 14.7.45 Find three positive numbers whose sum is 100 and whose product is a maximum.

3 14.7.53 A cardboard box without a lid is to have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions that minimize the amount of cardboard used.

4 14.7.42 Find the point on the plane $x-2 y+3 z=6$ that is closest to the point $(0,1,1)$. Note: The distance to a plane formula on page 830 in the textbook can be used to check your answer.

5 14.7.55 If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

6 14.8.3 $\mathcal{B} 5$ Use Lagrange multipliers to find the absolute maximum and minimum values of the function subject to the given constraint.
(a) $f(x, y)=x^{2}-y^{2}, \quad x^{2}+y^{2}=1$
(b) $f(x, y)=x y, \quad 4 x^{2}+y^{2}=8$

7 14.8.17 Find the extreme value of $f(x, y, z)=y z+x y$ subject to the constraints $x y=1$ and $y^{2}+z^{2}=1$.

8 14.8.29 Use Lagrange multipliers to prove that the rectangle of maximum area that has a given perimeter p is a square.

