MA 213 Worksheet \#15

Section 15.3

03/05/19

1 15.3.5 Sketch the region whose area is given by the following integral. Evaluate the integral.

$$
\int_{\pi / 4}^{3 \pi / 4} \int_{1}^{2} r d r d \theta
$$

2 Evaluate the given integral by changing to polar coordinates.
(a) 15.3.7 $\iint_{D} x^{2} y d A$, where D is the top half of the disk with center at the origin and radius 5.
(b) 15.3.9 $\iint_{R} \sin \left(x^{2}+y^{2}\right) d A$, where R is the region in the first quadrant between the circles centered at the origin and radii 1 and 3 .

3 15.3.17 Use a double integral to find the area of the region inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$.

4 15.3.23 Use polar coordinates to find the volume of a sphere of radius a.

5 15.3.35 A swimming pool is circular with a 40 foot diameter. The depth of the water is constant along east-west lines and increases linearly from 2 feet at the south end to 7 feet at the north end. Find the volume of water in the pool.

6 15.2 Review Find the volume of the solid by subtracting two volumes.
(a) 15.2.35 The solid enclosed by the parabolic cylinders $y=1-x^{2}$ and $y=x^{2}-1$, and the planes $x+y+z=2$ and $2 x+2 y-z+10=0$.
(b) 15.2.37 The solid under the plane $z=3$, above the plane $z=y$, and between the parabolic cylinders $y=x^{2}$ and $y=1-x^{2}$.

