MA 213 Worksheet \#17

(03/21/19

03/21/19

1 Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
15.7.1a $\quad(4, \pi / 3,-2)$
15.7.1b $\quad(2,-\pi / 2,1)$

2 Change from rectangular to cylindrical coordinates.
15.7.3a $(-1,1,1)$
$15.7 .3 b(-2,2 \sqrt{3}, 3)$

3 Sketch the solid described by the given inequalities.
15.7.11 $r^{2} \leq z \leq 8-r^{2}$

4 15.7.17 Use cylindrical coordinates to evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$ where E is the region that lies inside the cylinder $x^{2}+y^{2}=16$ and between the planes $z=-5$ and $z=4$.

5 15.7.19 Evaluate $\iiint_{E}(x+y+z) d V$, where E is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.

6 15.7.21 Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.

