MA 213 Worksheet #17

Section 15.7 03/21/19

1 Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.

15.7.1a $(4, \pi/3, -2)$ 15.7.1b $(2, -\pi/2, 1)$

2 Change from rectangular to cylindrical coordinates.

15.7.3a (-1,1,1)15.7.3b $(-2,2\sqrt{3},3)$

3 Sketch the solid described by the given inequalities.

15.7.11 $r^2 \le z \le 8 - r^2$

- 4 15.7.17 Use cylindrical coordinates to evaluate $\iiint_E \sqrt{x^2 + y^2} \, dV$ where E is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.
- **5** 15.7.19 Evaluate $\iiint_E (x+y+z) dV$, where E is the solid in the first octant that lies under the paraboloid $z=4-x^2-y^2$.
- **6** 15.7.21 Evaluate $\iiint_E x^2 dV$, where E is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4x^2 + 4y^2$.