MA 213 Worksheet #18 Section 15.8 3/26/19

- **1** 15.8.1 Plot the point whose spherical coordinates are given. Then find the rectangular coordinates of the point.
 - (a) $(6, \pi/3, \pi/6)$
 - (b) $(3, \pi/2, 3\pi/4)$
- 2 15.8.3 Change from rectangular to spherical coordinates.
 - (a) (0, -2, 0)
 - (b) $(-1, 1 \sqrt{2})$
- **3** 15.8.5 and 15.8.7 Identify the surface whose equation is given in spherical coordinates.
 - (a) $\phi = \pi/3$ (b) $\rho \cos \phi = 1$
- 4 15.8.17 Sketch the solid whose volume is given by the integral and evaluate the integral.

$$\int_0^{\pi/6} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$

5 15.8.25 Evaluate $\iiint_E xe^{x^2+y^2+z^2}dV$, where E is the portion of the unit ball $x^2 + y^2 + z^2 \le 1$ that lies in the first octant.

6 15.8.29

- (a) Find the volume of the solid that lies above the cone $\phi = \pi/3$ and below the sphere $\rho = 4\cos\phi$.
- (b) Find the centroid of the solid in part (a).

7 15.8.41 Evaluate the integral by changing to spherical coordinates.

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} xy \, dz \, dy \, dx$$