## MA 213 Worksheet \#18 <br> Section 15.8 <br> 3/26/19

1 15.8.1 Plot the point whose spherical coordinates are given. Then find the rectangular coordinates of the point.
(a) $(6, \pi / 3, \pi / 6)$
(b) $(3, \pi / 2,3 \pi / 4)$

2 15.8.3 Change from rectangular to spherical coordinates.
(a) $(0,-2,0)$
(b) $(-1,1-\sqrt{2})$
315.8 .5 and 15.8.7 Identify the surface whose equation is given in spherical coordinates.
(a) $\phi=\pi / 3$
(b) $\rho \cos \phi=1$

4 15.8.17 Sketch the solid whose volume is given by the integral and evaluate the integral.

$$
\int_{0}^{\pi / 6} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \theta d \phi
$$

5 15.8.25 Evaluate $\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} d V$, where $E$ is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ that lies in the first octant.

6 15.8.29
(a) Find the volume of the solid that lies above the cone $\phi=\pi / 3$ and below the sphere $\rho=4 \cos \phi$.
(b) Find the centroid of the solid in part (a).

7 15.8.41 Evaluate the integral by changing to spherical coordinates.

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x y d z d y d x
$$

