

MA 213 Worksheet #2 Section 12.2 1/15/19

1 12.2.3 Name all the equal vectors in the parallelogram shown.

- 2 12.2.5 Copy the vectors in the figure and use them to draw the following vectors.
- **3** Find a vector **a** with representation given by the directed line segment \overrightarrow{AB} . Draw \overrightarrow{AB} and the equivalent representation starting at the origin.
- 4 Find $\mathbf{a} + \mathbf{b}$, $4\mathbf{a} + 2\mathbf{b}$, $|\mathbf{a}|$ and $|\mathbf{a} \mathbf{b}|$. 12.2.19 $\mathbf{a} = \langle -3, 4 \rangle$, $\mathbf{b} = \langle 9, -1 \rangle$ 12.2.21 $\mathbf{a} = 4\mathbf{i} - 3\mathbf{j}$, $\mathbf{b} = 2\mathbf{i} - 4\mathbf{k}$
- **5** Find a unit vector that has the same direction as the given vector. $12.2.23 \quad \langle 6, -2 \rangle$ $12.2.25 \quad 8\mathbf{i} - \mathbf{j} + 4\mathbf{k}$
- **6** 12.2.29 If **v** lies in the first quadrant and makes an angle $\pi/3$ with the positive x-axis and $|\mathbf{v}| = 4$, find **v** in component form.
- 7 12.2.33 Find the magnitude of the resultant force and the angle it makes with the positive x-axis.
- 8 12.2.37 A block-and tackle pulley hoist is suspended in a warehouse by ropes of lengths 2 m and 3 m. The hoist weighs 350 N. The ropes, fastened at different heights, make angles of 50° and 38° with the horizontal. Find the tension in each rope and the magnitude of each tension.

9 12.2.47 If $\mathbf{r} = \langle x, y, z \rangle$ and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, describe the set of all points (x, y, z) such that $|\mathbf{r} - \mathbf{r}_0| = 1$.