MA 213 Worksheet \#21

Section 16.2
4/4/19

1 Evaluate the line integral, where C is the given curve.
16.2.1 $\int_{C} y d s, \quad C: x=t^{2}, y=2 t, 0 \leq t \leq 3$.
16.2.10 $\int_{C} y^{2} z d s, \quad C$ is the line segment from $(3,1,2)$ to $(1,2,5)$.
16.2.14 $\int_{C} y d x+z d y+x d z, \quad C: x=\sqrt{t}, y=t, z=t^{2}, 1 \leq t \leq 4$.

2 Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by the function $\mathbf{r}(t)$.
16.2.19 $\mathbf{F}(x, y)=x y^{2} \mathbf{i}-x^{2} \mathbf{j}, \quad \mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 1$.
16.2.22 $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+x y \mathbf{k}, \quad \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq \pi$.

3 16.2.39 Find the work done by the force field $\mathbf{F}(x, y)=x \mathbf{i}+(y+2) \mathbf{j}$ in moving an object along an arch of the cycloid: $\mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi$.

4 16.2.43 The position of an object with mass m at time t is $\mathbf{r}(t)=a t^{2} \mathbf{i}+b t^{3} \mathbf{j}, 0 \leq t \leq 1$.
(a) What is the force acting on the object at time t ?
(b) What is the work done by the force during the time interval $0 \leq t \leq 1$?

