MA 213 Worksheet \#23

Sections 16.5 and 16.6
04/16/19

1 16.5.1 Find (1) the curl and (2) the divergence of the vector field

$$
\mathbf{F}(x, y, z)=x y^{2} z^{2} \mathbf{i}+x^{2} y z^{2} \mathbf{j}+x^{2} y^{2} z \mathbf{k}
$$

2 16.5.15 Determine whether or not the vector field $\mathbf{F}(x, y, z)=z \cos (y) \mathbf{i}+x z \sin (y) \mathbf{j}+x \cos (y) \mathbf{k}$ is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.

3 16.5.23 Let \mathbf{F} and \mathbf{G} be vector fields. Prove the identity, assuming that the appropriate partial derivatives exist and are continuous.

$$
\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G} .
$$

4 16.6.5 Identify the surface with the vector equation:

$$
\mathbf{r}(s, t)=\langle s \cos t, s \sin t, s\rangle
$$

5 16.6.21 Find a parametric representation for the part of the hyperboloid $4 x^{2}-4 y^{2}-z^{2}=4$ that lies in front of the $y z$-plane.

6 16.6.37 Find an equation of the tangent plane to the parametric surface

$$
\mathbf{r}(u, v)=\left\langle u^{2}, 2 u \sin v, u \cos v\right\rangle,
$$

at the point $u=1, v=0$.

7 16.6.47 Find the area of the part of the paraboloid $y=x^{2}+z^{2}$ that lies within the cylinder $x^{2}+z^{2}=16$.

