MA 213 Worksheet \#25

Sections 16.8 \& 16.9

04/23/19

1. 16.8.3,5 Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$
(a) $\mathbf{F}(x, y, z)=z e^{y} \mathbf{i}+x \cos (y) \mathbf{j}+x z \sin (y) \mathbf{k}, S$ is the hemisphere $x^{2}+y^{2}+z^{2}=16, y \geq 0$, oriented in the direction of the positive y-axis
(b) $\mathbf{F}(x, y, z)=x y z \mathbf{i}+x y \mathbf{j}+x^{2} y z \mathbf{k}, S$ consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward
2. 16.8.7,10 Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. In each case C is oriented counterclockwise as viewed from above.
(a) $\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+\left(y+z^{2}\right) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}, C$ is the triangle with vertices $(1,0,0)$, $(0,1,0)$, and $(0,0,1)$
(b) $\mathbf{F}(x, y, z)=2 y \mathbf{i}+x z \mathbf{j}+(x+y) \mathbf{k}, C$ is the curve of intersection of the plane $z=y+2$ and the cylinder $x^{2}+y^{2}=1$
3. 16.9.5,7,11 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
(a) $\mathbf{F}(x, y, z)=x y e^{z} \mathbf{i}+x y^{2} z^{3} \mathbf{j}-y e^{z} \mathbf{k}, S$ is the surface of the box bounded by the coordinate planes and the planes $x=3, y=2$, and $z=1$.
(b) $\mathbf{F}(x, y, z)=3 x y^{2} \mathbf{i}+x e^{z} \mathbf{j}+z^{3} \mathbf{k}, S$ is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$
(c) $\mathbf{F}(x, y, z)=\left(2 x^{3}+y^{3}\right) \mathbf{i}+\left(y^{3}+z^{3}\right) \mathbf{j}+3 y^{2} z \mathbf{k}, S$ is the surface of the solid bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the $x y$-plane
