MA 213 Worksheet \#26

Review for Final!
04/25/19

Chapter 16 Questions: Taken from Chapter 16 Review, pgs 1148-1149.

1 (a) Write the definition of the line integral of a scalar function f along a smooth curve C with respect to arc length.
(b) State the Fundamental Theorem for Line Integrals.
(c) What does it mean to say that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path? If you know that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path, what can you say about \mathbf{F} ?

2 Evaluate the line integral: $\int_{C} y z \cos (x) d s$, where $C: x=t, y=3 \cos (t), z=3 \sin (t), 0 \leq t \leq \pi$

3 Show by example the following is false: If \mathbf{F} and \mathbf{G} are vector fields and $\operatorname{div} \mathbf{F}=\operatorname{div} \mathbf{G}$, then $\mathbf{F}=\mathbf{G}$.

4 Evaluate the line integral: $\int_{C} x y d x+y^{2} d y+y z d z$, where C is the line segment from $(1,0,-1)$ to $(3,4,2)$.

5 Show that $\mathbf{F}(x, y)=(1+x y) e^{x y} \mathbf{i}+\left(e^{y}+x^{2} e^{x y}\right) \mathbf{j}$ is a conservative vector field. Then find the function f such that $\mathbf{F}=\nabla f$

6 Use Green's Theorem to evaluate $\int_{C} x^{2} y d x-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.

7 Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$, and C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$, oriented counter-clockwise as viewed from above.

8 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{S}$, where $\mathbf{F}(x, y, z)=$ $x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2$.

Chapter 12-15 Questions:

912 - Find an equation of the plane through $(2,1,0)$ and parallel to $x+4 y-3 z=1$.

10 12 - Find a vector perpendicular to the plane through the points $A=(1,0,0), B=(2,0,-1), C=$ $(1,4,3)$. Now find the area of triangle $A B C$.

11 13.4.17 Find the position vector of a particle that has acceleration vector $\mathbf{a}(t)=2 t \mathbf{i}+\sin t \mathbf{j}+$ $\cos 2 t \mathbf{k}$, initial velocity $\mathbf{v}(0)=\mathbf{i}$, and initial position $\mathbf{r}(0)=\mathbf{j}$.

12 14.5.21 - Use the Chain Rule to find $\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}, \frac{\partial z}{\partial u}$ when $s=4, t=2$, and $u=1$.

$$
z=x^{2}+y^{2}, \quad x=s+2 t-u, \quad y=s t u^{2}
$$

13 14.7.31 - Find the absolute maximum and minimum values of f on the set D

$$
f(x, y)=x^{2}+y^{2}-2 x
$$

D is the closed triangular region with vertices $(2,0),(0,2)$, and $(0,-2)$.

14 14.8.5 - The following is an extreme value problem with both a maximum and minimum value. Use Lagrange Multipliers to find the extreme values of the function subject to the given constraint.

$$
\begin{aligned}
& f(x, y)=x y \\
& 4 x^{2}+y^{2}=8
\end{aligned}
$$

15 14.4.19 Given that f is a differentiable function with $f(2,5)=6, f_{x}(2,5)=1$ and $f_{y}(2,5)=-1$, use a linear approximation to estimate $f(2.2,4.9)$.

16 15.2.17 Evaluate the integral $\iint_{D} x \cos y d A$, where D is the region bounded by $y=0, y=x^{2}$, and $x=1$.

17 15.8.27 - Find the volume of the part of the ball $\rho \leq a$ that lies between the cones $\varphi=\pi / 6$ and $\varphi=\pi / 3$.

