MA 213 Worksheet #4 Section 12.4 1/22/19

- 1 Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both \mathbf{a} and \mathbf{b} .
 - $\begin{array}{ll} 12.4.2 & {\bf a} = \langle 4,3,-2\rangle, & {\bf b} = \langle 2,-1,1\rangle \\ 12.4.3 & {\bf a} = 2{\bf j}-4{\bf k}, & {\bf b} = -{\bf i}+3{\bf j}+{\bf k} \\ 12.4.5 & {\bf a} = \frac{1}{2}{\bf i}+\frac{1}{3}{\bf j}+\frac{1}{4}{\bf k}, & {\bf b} = {\bf i}+2{\bf j}-3{\bf k} \end{array}$
- **2** 12.4.17 If $\mathbf{a} = \langle 2, -1, 3 \rangle$ and $\mathbf{b} = \langle 4, 2, 1 \rangle$, find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.
- **3** 12.4.20 Find two unit vectors orthogonal to both $\mathbf{j} \mathbf{k}$ and $\mathbf{i} + \mathbf{j}$.
- **4** 12.4.22 Explain why $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$ for all vectors **a** and **b** in V_3 .
- 5 (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R; (b) find the area of triangle PQR. 12.4.29 P(1,0,1), Q(-2,1,3), R(4,2,5)
- **6** Find the volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b} , and \mathbf{c} . 12.4.34 $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{j} + \mathbf{k}$, $\mathbf{c} = \mathbf{i} + \mathbf{j} + \mathbf{k}$
- 7 12.4.43 If $\mathbf{a} \cdot \mathbf{b} = \sqrt{3}$ and $\mathbf{a} \times \mathbf{b} = \langle 1, 2, 2 \rangle$, find the angle between \mathbf{a} and \mathbf{b} .
- 8 12.4.44 (a) Find all vectors \mathbf{v} such that

$$\langle 1, 2, 1 \rangle \times \mathbf{v} = \langle 3, 1, -5 \rangle$$

(b) Explain why there is no vector \mathbf{v} such that

$$\langle 1, 2, 1 \rangle \times \mathbf{v} = \langle 3, 1, 5 \rangle$$