MA 213 Worksheet \#6

Section 12.6-13.1

$1 / 29 / 19$

1 12.6.1 (a) What does the equation $y=x^{2}$ represent as a curve in \mathbb{R}^{2}.
(b) What does it represent as a surface in \mathbb{R}^{3}
(c) What does the equation $z=y^{2}$ represent?

2 12.6.7 Describe and sketch the surface $x y=1$.

3 12.6.11 Use traces to sketch and identify the surface $x=y^{2}+4 z^{2}$.

4 Reduce the equation to one of the standard forms, classify the surface, and sketch it.

$$
\begin{array}{ll}
12.6 .35 & x^{2}+y^{2}-2 x-6 y-z+10=0 \\
12.6 .37 & x^{2}-y^{2}+z^{2}-4 x-2 z=0
\end{array}
$$

5 12.6.43 Sketch the region bounded by the surfaces $z=\sqrt{x^{2}+y^{2}}$ and $x^{2}+y^{2}=1$ for $1 \leq z \leq 2$.

6 13.1.7 Sketch the curve $\mathbf{r}(t)=\langle\sin t, t\rangle$. Indicate with an arrow the direction in which t increases.

7 13.1.17 Find a vector equation and parametric equations for the line segment that joins $P(2,0,0)$ to $Q(6,2,-2)$.

8 13.1.49 Suppose the trajectories of two particles are given by the vector functions

$$
\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad \mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

for $t \geq 0$. Do the particles collide?

9 12.6.21-28 (On back)

21-28 Match the equation with its graph (labeled I-VIII). Give reasons for your choice.
21. $x^{2}+4 y^{2}+9 z^{2}=1$
23. $x^{2}-y^{2}+z^{2}=1$
25. $y=2 x^{2}+z^{2}$
27. $x^{2}+2 z^{2}=1$

I

III

v

VII

22. $9 x^{2}+4 y^{2}+z^{2}=1$
24. $-x^{2}+y^{2}-z^{2}=1$
26. $y^{2}=x^{2}+2 z^{2}$
28. $y=x^{2}-z^{2}$

II

IV

VI

VIII

