Name: \qquad Section and/or TA: \qquad

1. (4 points) Consider the surfaces S_{1} and S_{2} in \mathbf{R}^{3} given by the equations

$$
\begin{array}{ll}
\left(S_{1}\right) & x^{2}+y^{2}+z^{2}-4 x-6 z+4=0 \\
\left(S_{2}\right) & x^{2}+y^{2}+z^{2}-6 y+6 z+2=0 .
\end{array}
$$

(a) (2 points) Show that S_{1} and S_{2} are spheres and find the coordinates of their centers C_{1} and C_{2} and their radii R_{1} and R_{2}.

Solution: Completing the squares, we rewrite the two equations as

$$
\begin{array}{ll}
\left(S_{1}\right) & (x-2)^{2}+y^{2}+(z-3)^{2}=9 \\
\left(S_{2}\right) & x^{2}+(y-3)^{2}+(z+3)^{2}=16
\end{array}
$$

These are equations of two spheres and

$$
C_{1}=(2,0,3), \quad C_{2}=(0,3,-3), \quad R_{1}=3, \quad R_{2}=4
$$

(b) (1 point) Find the distance D between C_{1} and C_{2}.

Solution: We have

$$
D=\sqrt{(0-2)^{2}+(3-0)^{2}+(-3-3)^{2}}=\sqrt{49}=7
$$

(c) (1 point) Check the correct answer (no explanation necessary):
$\square \quad S_{1}$ and S_{2} have no points in common - $\quad S_{1}$ and S_{2} have one point in common (i.e. are tangent) $\square \quad S_{1}$ and S_{2} have infinitely many points in common

Solution: Since $D=R_{1}+R_{2}$, the two spheres are tangent to each other and have a unique common point.

