Name:	

Section and/or TA: _____

- 1. (4 points) Let $\mathbf{v} = \langle 2, 3, -6 \rangle$.
 - (a) (1 point) Find the projection \mathbf{w} of \mathbf{v} onto the *xz*-plane.

Solution: Since the projection of the point (2, 3, -6) onto the *xz*-plane is (2, 0, -6), we have $\mathbf{w} = \langle 2, 0, -6 \rangle$.

(b) (2 points) Find the cosine of the angle θ between **v** and **w**.

Solution: We have

$$\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} = \frac{40}{(\sqrt{49})(\sqrt{40})} = \frac{2\sqrt{10}}{7}.$$

(c) (1 point) Is angle θ acute or obtuse?

Solution: Since $\cos(\theta) > 0$, angle θ is acute.