Name: \qquad Section and/or TA: \qquad

1. (4 points) Consider the points $P(0,2,1), Q(1,5,3), R(3,1,1)$.
(a) (3 points) Find an equation for the plane passing through P, Q and R. Write the equation in the form

$$
x+b y+c z=d
$$

Solution: We have

$$
\overrightarrow{P Q}=\langle 1,3,2\rangle, \quad \overrightarrow{P R}=\langle 3,-1,0\rangle
$$

and

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 2,6,-10\rangle
$$

Thus the equation for the plane passing through P, Q and R can be written as

$$
x+3 y-5 z=d
$$

To find d, substitute the coordinates of P (or Q, or R). This gives $d=1$ and the equation of the plane is

$$
x+3 y-5 z=1
$$

(b) (1 point) Find an equation for the plane parallel to plane in part (a) and passing through $S(1,1,1)$.

Solution: Since the planes are parallel, we can keep the same left-hand side. For the right-hand side, substitute the coordinates of S. This gives the equarion

$$
x+3 y-5 z=-1
$$

