Name: \qquad Section and/or TA: \qquad

1. (2 points) Given that f is a differentiable function with $f(2,5)=6, f_{x}(2,5)=-1$, and $f_{y}(2,5)=1$, use linear approximation to estimate $f(2.1,4.8)$.

Solution: We have

$$
L(x, y)=f(2,5)+f_{x}(2,5)(x-2)+f_{y}(2,5)(y-5)
$$

i.e.,

$$
L(x, y)=6-(x-2)+(y-5)=3-x+y .
$$

Then

$$
f(2.1,4.8) \approx L(2.1,4.8)=6-(0.1)+(-0.2)=5.7
$$

2. (2 points) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, assuming that z is defined implicitly as a function of x and y by the equation $e^{z}=2 x y z$.

Solution: We differentiate the equation $e^{z}=2 x y z$ with respect to x assuming that z is a function of x and y :

$$
e^{z}\left(\frac{\partial z}{\partial x}\right)=2 y z+2 x y\left(\frac{\partial z}{\partial x}\right) .
$$

Solving this for $\frac{\partial z}{\partial x}$ gives

$$
\frac{\partial z}{\partial x}=\frac{2 y z}{e^{z}-2 x y}
$$

Similarly (or by symmetry),

$$
\frac{\partial z}{\partial y}=\frac{2 x z}{e^{z}-2 x y}
$$

