MA 213 Worksheet \#4

Section 12.4

1 Find the cross product $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$. Verify that $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.
12.4.2 $\quad \mathbf{a}=\langle 4,3,-2\rangle$,
$\mathbf{b}=\langle 2,-1,1\rangle$
12.4.5 $\quad \mathbf{a}=\frac{1}{2} \mathbf{i}+\frac{1}{3} \mathbf{j}+\frac{1}{4} \mathbf{k}, \quad \mathbf{b}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$

2 12.4.20 Find two unit vectors orthogonal to both $\mathbf{j}-\mathbf{k}$ and $\mathbf{i}+\mathbf{j}$.

3 12.4.29 For points $P(1,0,1), Q(-2,1,3)$, and $R(4,2,5)$
(a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R;
(b) Find the area of triangle $P Q R$.

4 12.4.34 Find the volume of the parallelepiped determined by the vectors $\mathbf{a}=\mathbf{i}+\mathbf{j}, \mathbf{b}=\mathbf{j}+\mathbf{k}$ and $\mathbf{c}=\mathbf{i}+\mathbf{j}+\mathbf{k}$. Are these vectors coplanar?

5 12.4.41 A wrench 30 cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction $\langle 0,3,-4\rangle$ at the end of the wrench. Find the magnitude of the force needed to supply $100 \mathrm{~N} \cdot \mathrm{~m}$ of troque to the bolt.

6 12.4.43 If $\mathbf{a} \cdot \mathbf{b}=\sqrt{3}$ and $\mathbf{a} \times \mathbf{b}=\langle 1,2,2\rangle$, find the angle between \mathbf{a} and \mathbf{b}.

Additional Recommended Problems

7 12.4.17 If $\mathbf{a}=\langle 2,-1,3\rangle$ and $\mathbf{b}=\langle 4,2,1\rangle$, find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.
8 12.4.22 Explain why $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$ for all vectors \mathbf{a} and \mathbf{b} in V_{3}.
9 12.4.37 Use the scalar triple product to verify that the vectors $\mathbf{u}=\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-\mathbf{j}$ and $\mathbf{w}=5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$ are coplanar.

10 12.4.44 (a) Find all vectors \mathbf{v} such that

$$
\langle 1,2,1\rangle \times \mathbf{v}=\langle 3,1,-5\rangle
$$

(b) Explain why there is no vector \mathbf{v} such that

$$
\langle 1,2,1\rangle \times \mathbf{v}=\langle 3,1,5\rangle
$$

