MA 213 Worksheet #4Section 12.4

- **1** Find the cross product $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$. Verify that $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} . 12.4.2 $\mathbf{a} = \langle 4, 3, -2 \rangle, \qquad \mathbf{b} = \langle 2, -1, 1 \rangle$ 12.4.5 $\mathbf{a} = \frac{1}{2}\mathbf{i} + \frac{1}{3}\mathbf{j} + \frac{1}{4}\mathbf{k}, \qquad \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$
- 2 12.4.20 Find two unit vectors orthogonal to both $\mathbf{j} \mathbf{k}$ and $\mathbf{i} + \mathbf{j}$.
- **3** 12.4.29 For points P(1,0,1), Q(-2,1,3), and R(4,2,5)
 - (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R;
 - (b) Find the area of triangle PQR.
- 4 12.4.34 Find the volume of the parallelepiped determined by the vectors $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{j} + \mathbf{k}$. Are these vectors coplanar?
- 5 12.4.41 A wrench 30cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction (0, 3, -4) at the end of the wrench. Find the magnitude of the force needed to supply 100 N·m of troque to the bolt.
- 6 12.4.43 If $\mathbf{a} \cdot \mathbf{b} = \sqrt{3}$ and $\mathbf{a} \times \mathbf{b} = \langle 1, 2, 2 \rangle$, find the angle between \mathbf{a} and \mathbf{b} .

Additional Recommended Problems

- 7 12.4.17 If $\mathbf{a} = \langle 2, -1, 3 \rangle$ and $\mathbf{b} = \langle 4, 2, 1 \rangle$, find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.
- 8 12.4.22 Explain why $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$ for all vectors \mathbf{a} and \mathbf{b} in V_3 .
- 9 12.4.37 Use the scalar triple product to verify that the vectors $\mathbf{u} = \mathbf{i} + 5\mathbf{j} 2\mathbf{k}$, $\mathbf{v} = 3\mathbf{i} \mathbf{j}$ and $\mathbf{w} = 5\mathbf{i} + 9\mathbf{j} - 4\mathbf{k}$ are coplanar.
- 10 12.4.44 (a) Find all vectors \mathbf{v} such that

$$\langle 1, 2, 1 \rangle \times \mathbf{v} = \langle 3, 1, -5 \rangle$$

(b) Explain why there is no vector \mathbf{v} such that

$$\langle 1, 2, 1 \rangle \times \mathbf{v} = \langle 3, 1, 5 \rangle$$