MA 213 Worksheet \#6

Section 12.6

1 12.6.1 (a) What does the equation $y=x^{2}$ represent as a curve in \mathbb{R}^{2}.
(b) What does it represent as a surface in \mathbb{R}^{3}
(c) What does the equation $z=y^{2}$ represent?

2 12.6.5 Describe and sketch the surface $z=1-y^{2}$.

3 Use traces to sketch and identify the surfaces.
12.6.7 $x y=1$
12.6.11 $x=y^{2}+4 z^{2}$.

4 12.6.21-28 On back

5 12.6.37 Reduce the equation $x^{2}-y^{2}+z^{2}-4 x-2 z=0$ to one of the standard forms, classify the surface, and sketch it.

Additional Recommended Problems

6 12.6.9
(a) Find and identify the traces of the quadratic surface $x^{2}+y^{2}-z^{2}=1$.
(b) If we change the equation in part (a) to $x^{2}-y^{2}+z^{2}=1$, how is the graph affected?
(c) What if we change the equation in part (a) to $x^{2}+y^{2}+2 y-z^{2}=0$?

7 12.6.35 Reduce the equation $x^{2}+y^{2}-2 x-6 y-z+10=0$ to one of the standard forms, classify the surface, and sketch it.

8 12.6.43 Sketch the region bounded by the surfaces $z=\sqrt{x^{2}+y^{2}}$ and $x^{2}+y^{2}=1$ for $1 \leq z \leq 2$.

9 12.6.52 Show that the curve of intersection of the surfaces $x^{2}+2 y^{2}-z^{2}+3 x=1$ and $2 x^{2}+$ $4 y^{2}-2 z^{2}-5 y=0$ lies in a plane.

21-28 Match the equation with its graph (labeled I-VIII). Give reasons for your choice.
21. $x^{2}+4 y^{2}+9 z^{2}=1$
23. $x^{2}-y^{2}+z^{2}=1$
25. $y=2 x^{2}+z^{2}$
27. $x^{2}+2 z^{2}=1$

I

III

v

VII

22. $9 x^{2}+4 y^{2}+z^{2}=1$
24. $-x^{2}+y^{2}-z^{2}=1$
26. $y^{2}=x^{2}+2 z^{2}$
28. $y=x^{2}-z^{2}$

II

IV

VI

VIII

