MA 213 Worksheet \#7

Sections 13.1 and 13.2

1 13.1.3 Find the limit: $\lim _{t \rightarrow 0}\left(e^{-3 t} \mathbf{i}+\frac{t^{2}}{\sin ^{2} t} \mathbf{j}+\cos (2 t) \mathbf{k}\right)$.

2 13.1.17 Find a vector equation and parametric equations for the line segment that joins $P(2,0,0)$ to $Q(6,2,-2)$.

3 13.1.43 Find a vector function that represents the curve of intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=1+y$.

4 13.1.49 Suppose the trajectories of two particles are given by the vector functions $\mathbf{r}_{1}(t)=$ $\left\langle t^{2}, 7 t-12, t^{2}\right\rangle$ and $\mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle$ for $t \geq 0$. Do the particles collide?

5 13.2.9 Find the derivative of the vector function $\mathbf{r}(t)=\left\langle\sqrt{t-2}, 3,1 / t^{2}\right\rangle$.

6 13.2.23 Find the parametric equation for the tangent line to the curve given by: $x=t^{2}+1, y=$ $4 \sqrt{t}$ and $z=e^{t^{2}-t}$ at the point $(2,4,1)$.

7 13.2.41 Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}+\sqrt{t} \mathbf{k}$ and $\mathbf{r}(1)=\mathbf{i}+\mathbf{j}$.

Additional Recommended Problems

8 13.1.7 Sketch the curve $\mathbf{r}(t)=\langle\sin t, t\rangle$. Indicate with an arrow the direction in which t increases.
$\mathbf{9}$ 13.1.31 At what point does the curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$?

10 13.2.33 The curves $\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{r}_{2}(t)=\langle\sin t, \sin (2 t), t\rangle$ intersect at the origin. Find their angle of intersection.

11 13.2.35 Evaluate the integral: $\int_{0}^{2}\left(t \mathbf{i}-t^{3} \mathbf{j}+3 t^{5} \mathbf{k}\right) d t$.

12 13.2.49 Find $f^{\prime}(2)$, where $f(t)=\mathbf{u}(t) \cdot \mathbf{v}(t), \mathbf{u}(2)=\langle 1,2,-1\rangle, \mathbf{u}^{\prime}(2)=\langle 3,0,4\rangle$ and $\mathbf{v}(t)=$ $\left\langle t, t^{2}, t^{3}\right\rangle$.

