MA 213 In-Class Work

Sections 13.3 and 13.4

1 Find the length of the following curves.

13.3.1 $\mathbf{r}(t) = \langle t, 3\cos(t), 3\sin(t) \rangle$ $-5 \le t \le 5$ 13.3.5 $\mathbf{r}(t) = \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$ $0 \le t \le 1$

- **2** 13.3.11 Let C be the curve of intersection of the parabolic cylinder $x^2 = 2y$ and the surface 3z = xy. Find the exact length of C from the origin to the point (6, 18, 36).
- **3** 13.3.13 Let $\mathbf{r}(t) = (5-t)\mathbf{i} + (4t-4)\mathbf{j} + 3t\mathbf{k}$.
 - **a** Find the arc length function for $\mathbf{r}(t)$ measured from the point P = (4, 1, 3) in the direction of increasing t and then reparameterize the curve with respect to arc length starting from P.
 - **b** Find the point 4 units along $\mathbf{r}(t)$ (in the direction of increasing t) from P.
- **4** Find the velocity, acceleration and speed of a particle with the given position function. Sketch the path of the particle. Draw the velocity and acceleration vectors for the specified value of t. 13.4.3 $\mathbf{r}(t) = \langle -\frac{1}{2}t^2, t \rangle$ t = 213.4.7 $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + 2\mathbf{k}$ t = 1
- 5 13.4.15 Find the velocity and position vectors of a particle with acceleration vector $\mathbf{a}(t) = 2\mathbf{i} + 2t\mathbf{k}$, initial velocity $\mathbf{v}(0) = 3\mathbf{i} \mathbf{j}$, and initial position $\mathbf{r}(0) = \mathbf{j} + \mathbf{k}$.
- 6 13.4.23 A projectile is fired with an initial speed of 200 m/s and angle of elevation 60. Find a the range of the projectile
 - **b** the maximum height reached
 - \mathbf{c} the speed at impact

Additional Recommended Problems

- 7 13.3.3 Find the length of the curve $\mathbf{r}(t) = \sqrt{2}t\mathbf{i} + e^t\mathbf{j} + e^{-t}\mathbf{k}$ for $0 \le t \le 1$. Hint: $e^{2t} + 2 + e^{-2t}$ is a perfect square.
- 8 13.3.15 Suppose you start at the point (0, 0, 3) and move 5 units along the curve $x = 3 \sin t$, y = 4t, $z = 3 \cos t$ in the positive direction. Where are you now?
- **9** Find the unit tangent vector for the following curves. $13.3.17 \quad \mathbf{r}(t) = \langle t, 3\cos(t), 3\sin(t) \rangle$ $13.3.19 \quad \mathbf{r}(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$
- 10 13.4.25 A ball is thrown at an angle of $\pi/4$ to the ground. If the ball lands 90 m away, what was the initial speed of the ball?