MA 213 In-Class Work

Sections 13.3 and 13.4

1 Find the length of the following curves.

$$
\begin{array}{lll}
\text { 13.3.1 } & \mathbf{r}(t)=\langle t, 3 \cos (t), 3 \sin (t)\rangle & -5 \leq t \leq 5 \\
\text { 13.3.5 } & \mathbf{r}(t)=\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} & 0 \leq t \leq 1
\end{array}
$$

2 13.3.11 Let C be the curve of intersection of the parabolic cylinder $x^{2}=2 y$ and the surface $3 z=x y$. Find the exact length of C from the origin to the point $(6,18,36)$.

3 13.3.13 Let $\mathbf{r}(t)=(5-t) \mathbf{i}+(4 t-4) \mathbf{j}+3 t \mathbf{k}$.
a Find the arc length function for $\mathbf{r}(t)$ measured from the point $P=(4,1,3)$ in the direction of increasing t and then reparameterize the curve with respect to arc length starting from P.
b Find the point 4 units along $\mathbf{r}(t)$ (in the direction of increasing t) from P.
4 Find the velocity, acceleration and speed of a particle with the given position function. Sketch the path of the particle. Draw the velocity and acceleration vectors for the specified value of t.

$$
\begin{array}{lll}
13.4 .3 & \mathbf{r}(t)=\left\langle-\frac{1}{2} t^{2}, t\right\rangle & t=2 \\
13.4 .7 & \mathbf{r}(t)=t)
\end{array}
$$

5 13.4.15 Find the velocity and position vectors of a particle with acceleration vector $\mathbf{a}(t)=$ $2 \mathbf{i}+2 t \mathbf{k}$, initial velocity $\mathbf{v}(0)=3 \mathbf{i}-\mathbf{j}$, and initial position $\mathbf{r}(0)=\mathbf{j}+\mathbf{k}$.

6 13.4.23 A projectile is fired with an initial speed of $200 \mathrm{~m} / \mathrm{s}$ and angle of elevation 60 . Find a the range of the projectile
b the maximum height reached
c the speed at impact

Additional Recommended Problems

7 13.3.3 Find the length of the curve $\mathbf{r}(t)=\sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}$ for $0 \leq t \leq 1$. Hint: $e^{2 t}+2+e^{-2 t}$ is a perfect square.

8 13.3.15 Suppose you start at the point $(0,0,3)$ and move 5 units along the curve $x=3 \sin t$, $y=4 t, z=3 \cos t$ in the positive direction. Where are you now?

9 Find the unit tangent vector for the following curves.

$$
\begin{array}{ll}
13.3 .17 & \mathbf{r}(t)=\langle t, 3 \cos (t), 3 \sin (t)\rangle \\
\text { 13.3.19 } & \mathbf{r}(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle
\end{array}
$$

1013.4 .25 A ball is thrown at an angle of $\pi / 4$ to the ground. If the ball lands 90 m away, what was the initial speed of the ball?

