MA 213 Worksheet \#10
 Section 14.4

1 14.4.5 Find an equation of the tangent plane to the surface $z=x \sin (x+y)$ at the point $(-1,1,0)$.

2 14.4.9 Given that f is a differentiable function with $f(2,5)=6, f_{x}(2,5)=1$ and $f_{y}(2,5)=-1$, use a linear approximation to estimate $f(2.2,4.9)$.

3 14.4.21 Find the linearization of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(3,2,6)$ and use it to approximate the number $\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}}$.

4 14.4.25 Find the differential of the function $z=e^{-2 x} \cos 2 \pi t$.

5 14.4.33 The length and width of a rectangle are measured as 30 cm and 24 cm , respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.

Additional Recommended Problems

6 14.4.1 Find an equation of the tangent plane to the surface $z=3 y^{2}-2 x^{2}$ at the point $(2,-1,-3)$.

7 14.4.17 Verify the following linear approximation at $(0,0)$:

$$
e^{x} \cos (x y) \approx x+1
$$

8 14.4.35 Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick.

9 14.4.42 Suppose you need to know an equation of the tangent plane to a surface S at the point $P(2,1,3)$. You don't have an equation for S but you know the curves

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =\left\langle 2+3 t, 1-t^{2}, 3-4 t-t^{2}\right\rangle \\
\mathbf{r}_{2}(u) & =\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle
\end{aligned}
$$

both lie on S. Find an equation of the tangent plane at P.

