MA 213 Worksheet \#11

Section 14.5

1 14.5.1 Use the Chain Rule to find $d z / d t$ for

$$
z=x y^{3}-x^{2} y, \quad x=t^{2}+1, \quad \text { and } y=t^{2}-1
$$

2 14.5.11 Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$ for

$$
z=e^{r} \cos (\theta), \quad r=s t, \quad \text { and } \theta=\sqrt{s^{2}+t^{2}}
$$

3 14.5.13 Let $p(t)=f(x, y)$, where f is differentiable, $x=g(t), y=h(t), g(2)=4, g^{\prime}(2)=-3$, $h(2)=5, h^{\prime}(2)=6, f_{x}(4,5)=2, f_{y}(4,5)=8$. Find $p^{\prime}(2)$.
4 14.5.19 Use a tree diagram to write out the Chain Rule for the following. Assume all functions are differentiable.
$T=F(p, q, r) \quad$ where $\quad p=p(x, y, z)$ and
$r=r(x, y, z) \quad q=q(x, y, z)$.
5 14.5.31 Find $\partial z / \partial x$ and $\partial z / \partial y$ assuming z is defined implicitly as a function of x and y as

$$
x^{2}+2 y^{2}+3 z^{2}=1
$$

6 14.5.39 Due to strange and difficult-to-explain circumstances, the length ℓ, width w, and height h of a box change with time. At a certain instant the dimensions are $\ell=1 \mathrm{~m}$ and $w=h=2 \mathrm{~m}$, and ℓ and w are increasing at a rate of $2 \mathrm{~m} / \mathrm{s}$ while h is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. At that instant find the rates at which the following quantities are changing.
(a) The volume
(b) The surface area
(c) The length of a diagonal

Additional Recommended Problems

7 14.5.3 Use the Chain Rule to find $d z / d t$ for $z=\sin (x) \cos (y), x=\sqrt{t}$ and $y=1 / t$.
8 14.5.15 Suppose f is a differentiable function of x and y, and $g(u, v)=f\left(e^{u}+\sin (v), e^{u}+\cos (v)\right)$. Use the table of values to calculate $g_{u}(0,0)$ and $g_{v}(0,0)$.

	f	g	f_{x}	f_{y}
$(0,0)$	3	6	4	8
$(1,2)$	6	3	2	5

9 14.5.23 Use the Chain Rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when $r=2, \theta=\pi / 2$. $w=x y+y z+z x \quad x=r \cos (\theta) \quad y=r \sin (\theta) \quad z=r \theta$
10 14.5.33 Find $\partial z / \partial x$ and $\partial z / \partial y$ assuming z is defines implicitly as a function of x and y as: $e^{z}=x y z$.

