MA 213 Worksheet \#12

Sections 14.6 and 14.7 (local extrema)

1 14.6.10 $f(x, y, z)=y^{2} e^{x y z}, \quad P(0,1,-1), \quad \mathbf{u}=\left\langle\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right\rangle$
(a) Find the gradient of f.
(b) Evaluate the gradient at the point P.
(c) Find the rate of change of f at P in the direction of the vector \mathbf{u}.

2 (a) 14.6.13 Find the directional derivative of the function $g(s, t)=s \sqrt{t}$ at the point $(2,4)$ in the direction of vector $\mathbf{v}=2 \mathbf{i}-\mathbf{j}$.
(b) 14.6.20 Find the directional derivative of $f(x, y)=x y^{2} z^{3}$ at $P(2,1,1)$ in the direction of $Q(0,-3,5)$.

3 14.6.33 Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z)=5 x^{2}-3 x y+x y z$.
(a) Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $\mathbf{v}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) In which direction does V change most rapidly at P ?
(c) What is the maximum rate of change at P ?

4 Find the local maximum and minimum values and saddle point(s) of the function.
14.7.5 $f(x, y)=x^{2}+x y+y^{2}+y$
14.7.7 $f(x, y)=(x-y)(1-x y)$
14.7.15 $f(x, y)=e^{x} \cos y$

5 14.7.23 Find the local maximum and minimum values and saddle point(s) of the function $f(x, y)=x^{2}+y^{2}+x^{-2} y^{-2}$ precisely, using calculus.

Additional Recommended Problems

6 14.6.15 Find the directional derivative of the function $f(x, y, z)=x^{2} y+y^{2} z$ at the point $(1,2,3)$, in the direction of vector $\mathbf{v}=\langle 2,-1,2\rangle$.
7 14.6.42 Find equations of (a) the tangent plane and (b) the normal line to the given level surface at the point $(3,1,-1)$.
8 14.6.55 Are there any points on the hyperboloid $x^{2}-y^{2}-z^{2}=1$ where the tangent plane is parallel to the plane $z=x+y$?
9 14.7.31 Find the absolute maximum and minimum values of $f(x, y)=x^{2}+y^{2}-2 x$ on the set D, where D is the closed triangle with vertices $(2,0),(0,2)$, and $(0,-2)$.
10 14.7.43 Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$.

