MA 213 Worksheet \#16

Sections 15.6 and 15.7

1 15.6.15 Evaluate the integral $\iiint_{T} y^{2} V$, where T is the solid tetrahedron with vertices $(0,0,0)$, $(2,0,0),(0,2,0)$ and $(0,0,2)$.
2 15.6.21 Use a triple integral to find the volume of the solid enclosed by the cylinder $y=x^{2}$ and the planes $z=0$ and $y+z=1$.
3 15.7.1 Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
(a) $(4, \pi / 3,-2)$
(b) $(2,-\pi / 2,1)$

4 15.7.3 Change from rectangular to cylindrical coordinates.
(a) $(-1,1,1)$
(b) $(-2,2 \sqrt{3}, 3)$

5 Use cylindrical coordinates to evaluate the following integrals.
15.7.17 $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$ where E is the region that lies inside the cylinder $x^{2}+y^{2}=16$ and between the planes $z=-5$ and $z=4$.
15.7.19 $\iiint_{E}(x+y+z) d V$, where E is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.

Additional Recommended Problems

6 15.6.13 Evaluate the triple integral:

$$
\iiint_{E} 6 x y d V
$$

where E is the (three dimensional) region that lies under the plane $z=1+x+y$ and above the (two dimensional) region in the $x y$-plane that is bounded by the curves $y=\sqrt{x}, y=0$ and $x=1$.
7 15.7.21 Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
8 15.7.29 Evaluate the integral by changing to cylindrical coordinates.

$$
\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{x^{2}+y^{2}}^{2} x z d z d x d y
$$

