INSTRUCTIONS: Answer ANY FOUR problems, each in a separate blue book.

- 1. Let U_1, U_2, \ldots be i.i.d. uniform on (0,1) and let Y_n denote the ν th order statistic of U_1, \ldots, U_n , where $\nu = n/2 + o(\sqrt{n}) \text{ as } n \rightarrow \infty.$
 - (a) Show that $2\sqrt{n}(\sqrt{n-\frac{1}{2}}) \to N(0,1)$ in distribution as $n\to\infty$.
 - (b) Let X_1, X_2, \ldots be i.i.d. with any continuous distribution function F and let M_n denote the median value of X_1, \ldots, X_n . Using the result of (a), find the asymptotic distribution of M_n as $n \rightarrow \infty$.
- 2. Let X₁,..., X_m, Y₁,..., Y_n be independent observations such that X₁ has a continuous distribution function F and Y₁ has a continuous distribution function G.
 - (i) Give an unbiased estimate of P[X < Y], where X and Y are independent observations from F and G respectively.
 - (iii) Find the variance of the estimator in (i). = P(xcy)[1-P(xcy)]. k

 (iii) How would you test the hypothesis F=G? Vs what? F=G

 use rank statistic

 or wing Sminner test.
- 3. Consider the multinomial distribution $P(X_1=x_1,X_2=x_2,X_3=x_3|X_1+X_2+X_3=N) = \frac{N!}{x_1!x_2!x_3!} p_1^{x_1}p_2^{x_2}p_3^{x_3}$ with $p_1+p_2+p_3=1$ and $p_1 \ge 0$

- (a) What is the maximum likelihood (ML) estimator of $p = (p_1, p_2, p_3)$?
- (b) Let $p_1 = \theta^2$, $p_2 = 2\theta(1-\theta)$, $p_3 = (1-\theta)^2$, $0 \le \theta \le 1$. Find the ML estimate of θ .
- (c) Find the ML estimate of θ if only $y_1=x_1$ and $y_2=x_2+x_3$ are observable. Call this estimate $\overline{\theta}$.
- (d) Find the exact or approximate mean and variance of $\hat{\theta}$ and $\overline{\theta}$, and compare the "goodness" in a suitable sense of $\hat{\theta}$ and $\overline{\theta}$ as estimates when x_1, x_2 and x_3 are observed.
- 4. Two laboratories each take n measurements on the same standard μ. Consider the model

$$y_{ij} = \mu + \epsilon_{ij} \quad i=1,2,\ldots; \quad j=1,\ldots,n,$$
 where the ϵ_{ij} are independent random variables with mean 0 such that $\text{Var } \epsilon_{1j} = \sigma_1^2$, $\text{Var } \epsilon_{2j} = \sigma_2^2$.

(i) Suppose it is known that $\sigma_2^2/\sigma_1^2=4$. Show that the minimum variance linear unbiased estimator of μ is given by

$$\hat{\mu} = \frac{4 \overline{y}_1 + \overline{y}_2}{5}$$
, where $\overline{y}_i = \frac{1}{n} \sum_{j=1}^{n} y_{jj}$.

(ii) Generalize the above result to the case where there are k laboratories and the errors for the ith laboratory are all independent with mean 0 and variance $a_i \sigma^2$ (i=1,...,k), where the a_i are known constants such that Σ a_i =1. Discuss how you would estimate σ^2 .

$$\hat{\mathcal{U}} = \frac{\sum_{j=1}^{N_1} y_{j,j}}{a_1} + \frac{\sum_{j=1}^{N_2} y_{k,j}}{a_1} + \frac{\sum_{j=1}^{N_1} y_{k,j}}{a_1}$$

$$\frac{y_1}{a_1} + \frac{y_2}{a_2} + \dots + \frac{y_n}{a_n}$$

5. Let $X = (X_1, ..., X_n)$ be a random sample of size n from the density

$$\frac{x+1}{\theta\,(\theta+1)}e^{-x/\theta}, \ x\geq 0, \qquad \lim_{\theta \to 0} \frac{\log x}{\log x} - \log x - \log x + \frac{x}{\theta}$$
 where θ is an unknown positive parameter.

- $= p \cdot \widehat{\theta}^{\varphi} V_{M}(x)$ What is the Fisher information $I(\theta;n)$ about θ contained under linear transformation a, b constant

 Sample mean I'm est. of (2011) = EX
- There is (essentially) one function $\tau(\theta)$ of the parameter, for which there exists an unbiased estimator T(X) with variance achieving the Cramér-Rao lower bound. Find (a version of) this function $\tau(\theta)$ and construct the appropriate estimator.
- (c) Discuss the asymptotic properties (as n→∞) of your estimator T(X); in particular, see if you can exhibit a function $\sigma^{2}(\theta)$ $\sqrt{n} \left[\mathbf{T} \left(\mathbf{X} \right) - \tau(\theta) \right] \stackrel{\mathbf{L}}{\underset{n \to \infty}{\longrightarrow}} \mathbb{N}[0, \sigma^{2}(\theta)].$ of the parameter such that
- (d) Based on your answer in question (b), see whether you can construct a minimum variance unbiased estimate for

$$g(\theta) = \frac{(3+2\theta)(2+\theta)}{1+\theta} \cdot E_{X+b} = \frac{2\theta^2+\delta}{6+1} + \frac{60+\delta}{6+1} = \frac{2\theta^2+7\theta+6}{6+1} = \frac{(3+2\theta)(2+\theta)}{6+1}$$

Consider the testing problem $= g(\theta)$ H: X $= g(\theta)$ Ho: X1, ..., Xn i.i.d. with the normal density and achieves cramer-Rase lower bound

$$f_{\theta}(x) = \frac{1}{\sqrt{2\pi} \theta} e^{-x^2/2\theta^2}, -\infty < x < \infty;$$

versus

 $H_1: X_1, \dots, X_n$ i.i.d. with the double exponential density $g_{A}(x) = \frac{1}{2A} e^{-|x|/\theta}, -\infty < x < \infty,$

where 6 is an unknown parameter.

- (i) Find the maximum likelihood estimator of θ under Ho and under Ho respectively.
- (ii) Based on X1,..., Xn, find a "reasonable" test statistic for discriminating between H_0 and H_1 , and describe how you would perform the test. Discuss any optimality properties your test might have. If you can think of more than one test, discuss their relative advantages and disadvantages.

neig Kolinogo rov that but a unknown. Estert.

inf
$$Sup(D|F_n(x) - F_0(x)) = \inf_{\theta} D_n(x, \theta)$$
 For both θ istributions, see $P(D_{normal}(x) < t)$ pyt , $3e$ assume py dest.

P(D(X)<+) PPT, 3è assume Trj dest. 如子欢强到七、