COMPREHENSIVE EXAM Statistical Inference August 23, 1985

This is a closed book, closed notes exam. Please start all problems on a new sheet of paper.

- Student's seeking a Master's Level Pass may attempt any five problems.
- Student's seeking a Ph.D. Level Pass should attempt problems 6 through 10.
- Student's seeking a pass at both levels must clearly designate those problems to be considered for the Master's Pass.

Port I: Students seeking a M.S. Level Pass should first attempt Problems 1-5.

1. [20 Points]

Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$.

- (i) [3 points] Find the method of moments estimator of θ .
- (ii) [4 points] Find the maximum likelihood estimator of θ .
- (iii) [7 points] Which of these estimators has the smallest mean square error? Defend your answer.
 - (iv) [6 points] Show that both of these estimators are inadmissible. {Hint: Consider an estimator of the form cθ, where θ is the m.l.e. of θ.}

2. [20 Points]

- (i) [7 points] State and prove the Rao-Blackwell Theorem.
- (ii) [3 points] State the Lehman-Scheffe Theorem.
- (iii) [10 points] Given X_1, \dots, X_n are Bernoulli variables with parameter $\theta = P\{X=1\}$. Use both theorems above to find an optimal estimator of $g(\theta) = Var(X)$.

3. [20 Points]

- (i) [7 points] State and prove the Neyman-Pearson Lemma.
- (ii) [3 points] State when this lemma can be extended to obtain a uniformly most powerful (UMP) test of H_0 : $\theta = \theta_0$ versus H_1 : $\theta > \theta_0$.
- (iii) [5 points] Apply the results above to define a UMP test of H_0 : $\lambda = 3$ versus H_1 : $\lambda > 3$ when X_1, \dots, X_n are i.i.d. exponential (λ).
 - (iv) [5 points] Determine an expression for the power function of this test in terms of the c.d.f. of a well tabulated statistical function.

- 4. [20 Points] Given X_1, \ldots, X_n is a random sample from $N(\mu_1, \sigma_1^2)$ and Y_1, \ldots, Y_m is a random sample from $N(\mu_2, \sigma_2^2)$ and the samples are independently chosen.
 - (i) [2 points each] Define an appropriate test statistic and critical region for each of the following hypotheses:
 - (a) H_0 : $\mu_1 = \mu_2$ versus H_1 : $\mu_1 \neq \mu_2$ when it is assumed that $\sigma_1^2 = \sigma_2^2$.
 - (b) H_0 : $\mu_1 = \mu_2$ versus H_1 : $\mu_1 \neq \mu_2$ when it cannot be assumed that $\sigma_1^2 = \sigma_2^2$.
 - (c) $H_0: \sigma_1^2 = \sigma_2^2 \text{ versus } H_1 \sigma_1^2 \neq \sigma_2^2$.
 - (ii) [7 points] Derive the test in part c above via the likelihood ratio criteria and give an expression for the power function of the test.
 - (iii) [7 points] Using Satterwhaite's procedure derive the approximate degrees of freedom for the test statistic in part b when the sampling distribution of the test statistic under H_O is approximated by a student's t distribution.

5. [20 Points]

Let X_1, X_2 and X_3 be i.i.d. $N(0, \theta)$. State the probability distributions of the following random variables:

(i) [2 points]
$$X_1 + X_2 - 2X_3$$

(11) [3 points]
$$(X_1 + X_2)^2/20$$

(iii) [3 points]
$$2X_1^2/(X_2^2 + X_3^2)$$

(iv) [3 points]
$$x_1^2/(x_1^2 + x_2^2)$$

(v) [3 points]
$$\sqrt{2} \overline{X}/S$$
,
where $\overline{X} = (X_1 + X_2 + X_3)/3$
and $S^2 = \Sigma(X_1 - \overline{X})^2/3$

- (vi) [3 points] Conditional distribution of X_1 given X_2
- (vii) [3 points] Conditional distribution of $(X_1 + X_2)$ given S^2

COMPREHENSIVE EXAM Part II

Statistical Inference

- 1. [20 Points] Let $0 = \left\{\frac{1}{3}, \frac{2}{3}\right\}$, $A = (-\infty, \infty)$, and $L(\theta, a) = (\theta a)^2$. A coin is tossed once, and the probability of heads is θ . A non-randomized decision rule is represented by a point (x,y) in $A \times A = \text{Euclidean}$ plane, where x is the action taken if heads occurs, and y is the action taken if tails occurs.
 - (i) [3 pts] Show that the rule d = (x,y) has risk function

$$R(\frac{1}{3},d) = \frac{1}{9} - \frac{2}{9}x + \frac{1}{3}x^2 - \frac{4}{9}y + \frac{2}{3}y^2,$$

$$R(\frac{2}{3},d) = \frac{4}{9} - \frac{8}{9}x + \frac{2}{9}x^2 - \frac{4}{9}y + \frac{1}{9}y^2.$$

- (ii) [3 pts] Show that the rule $d_0 = (\frac{5}{9}, \frac{4}{9})$ is Bayes w.r.t., the prior τ_0 placing probability $\frac{1}{2}$ at each point of 0.
- (iii) [3 pts] Show that do is an equalizer rule.
 - (iv) [3 pts] Show that do is admissible.
 - (v) [3 pts] Show that do is a minimax rule.
- (vi) [5 pts] Prove that τ_0 is least favorable and that the game has a value.
- [20 Points]
 (i) [10 Points]

Let X_1, \ldots, X_n be i.i.d. $N(\theta, \mathbb{N})$, where \mathbb{N} is a fixed constant $0 < \mathbb{N} < \infty$. Under squared error loss, derive a minimax estimator of θ , where $\theta \in \Theta$, $\Theta = (-\infty, \infty)$. Is it admissible? Is it unique?

(ii) [10 Points]

Let X_1, \ldots, X_n be i.i.d. F, where $F \in F_M = \{F: \ V_F \leq M\}$, where V_F is the variance of the distribution F and M is a fixed constant $0 < M < \infty$. Consider the problem of estimating the mean, θ_F , of F under squared error loss.

Show that $X = n^{-1} \sum_{i=1}^{n} X_i$ is the unique minimax estimator.

. 3. [20 Points]

Let $X = (X_1, ..., X_n)$ have i.i.d. elements with p.d.f.

$$f(x;\theta,\beta) = \beta^{-1}I_{(\alpha,\infty)}(x)\exp[\frac{-(x-\theta)}{\beta}], \theta, \beta > 0$$
.

Let 6 be the group of transformations defined by a

 $G = \{g_n : c \in \mathbb{R}\}, \text{ where}$

$$g_{c}(x) = x + c1$$
, where 1 = (1,1,...,1)' and $c \in \mathbb{R}$.

(i) [5 pts] Show that a maximal invariant with respect to G is

$$x_{(2)} - x_{(1)}, x_{(3)} - x_{(2)}, \dots, x_{(n)} - x_{(n-1)}$$

where $X_{(1)} < X_{(2)} < \dots < X_{(n)}$ are the order statistics.

- [5 pts] Show that $D_i = (n-i+1)(X_{(i)} X_{(i-1)})$, i=2,...,n, are i.i.d. with p.d.f. $\frac{1}{\beta} \exp(\frac{x}{\beta})I(x)$.
- (iii) [10 pts] Derive the UMP invariant test of size an, 0 < an < 1, of

 $H_0: \beta \le 1 \text{ vs } H_1: \beta > 1$. Be sure to include a justification of the UMP invariant property of your test.

4. [20 Points]

Let (Y, X,), i=1,...,n, be i.i.d. random vectors with mean

$$\Sigma = \begin{bmatrix} \mu^2 & \mu \delta^2 \\ \mu \delta^2 & \delta^2 \end{bmatrix} .$$

(i) [12 pts] Discuss the asymptotic properties (consistency and asymptotic distribution, suitability normalized) of

$$T_n = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n X_i}$$

(ii) [8 pts] Derive a "large-sample" test of

$$H_1: \mu \neq 1$$

for $0 < \alpha_0 < 1$. (Here α_0 is the level of significance.)

- 5. Choose either (a) or (b).
 - (a) [20 Points]

Let $X = (X_1, X_2, X_3)'$ be a trivariate normal with

$$EX_1 = 3\theta, \quad \theta > 0,$$

 $EX_1 = 0, \quad \text{if } i = 2,3$

and dispersion matrix

$$\Sigma = \begin{bmatrix} 2+8^2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

The joint density of $X = (X_1, X_2, X_3)^t$ is

$$\frac{1}{\theta(2\pi)^{3/2}} \exp\left(-\frac{1}{2} \left[\frac{3^2}{2} (\overline{X} - \theta)^2 + \int_{1=2}^{3} X_1^2\right], -\infty < X_1, X_2, X_3 < \infty \right).$$

Let θ_0 and $\theta_1(\theta_1 > \theta_0)$ be two distinct parameter values. Show that a U.M.P. test of size $\alpha_0, 0 < \alpha_0 < 1$, for θ_0 : $\theta = \theta_0$ vs θ_1 : $\theta \geq \theta_1$ does not exist.

(b) Let X_1, X_2, \dots, X_n be i.i.d. with common density

$$\frac{1}{\beta} \exp\left(\frac{-(x-\theta)}{\beta}\right)$$
 for $x \ge \theta$, θ , $\beta > 0$.

(i) [15 pts] Show that the U.MP.U. test of size a_0 , $0 < a_0 < 1$ for H_0 : $\beta = 1$ vs H_1 : $\beta \neq 1$, has the acceptance region

$$C_{1\alpha_0} \leq 2 \sum_{i=1}^{n} [X_i - \min(X_1, \dots, X_n)] \leq C_{2\alpha_0}$$

(Be sure to indicate how $C_{1\alpha_0}$ and $C_{2\alpha_0}$ could be determined.)

(ii) [5 pts] What is the distribution of the test statistic under H₀?

- Part II: Students seeking a Ph.D. pass should attempt Problems 6-10 inclusive.
- 6. [20 Points]
 Let $\theta = \left\{\frac{1}{3}, \frac{2}{3}\right\}$, $A = (-\infty, \infty)$, and $L(\theta, a) = (\theta a)^2$. A coin is tossed once, and the probability of heads is θ . A non-randomized decision rule is represented by a point (x,y) in $A \times A = \text{Euclidean}$ plane, where x is the action taken if heads occurs, and y is the action taken if tails occurs.
 - (i) [3 pts] Show that the rule d = (x,y) has risk function

$$\begin{split} & R(\frac{1}{3},d) = \frac{1}{9} - \frac{2}{9}x + \frac{1}{3}x^2 - \frac{4}{9}y + \frac{2}{3}y^2 , \\ & R(\frac{2}{3},d) = \frac{4}{9} - \frac{8}{9}x + \frac{2}{3}x^2 - \frac{4}{9}y + \frac{1}{3}y^2 . \end{split}$$

- (ii) [3 pts] Show that the rule $d_0 = (\frac{5}{9}, \frac{4}{9})$ is Rayes w.r.t., the prior τ_0 placing probability $\frac{1}{2}$ at each point of 0.
- (111) [3 pts] Show that do is an equalizer rule.
- (iv) [3 pts] Show that do is admissible.
 - (v) [3 pts] Show that do is a minimax rule.
- (vi) [5 pts] Prove that To is least favorable and that the game has a value.

7. [20 Points]

(i) [10 Points]

Let X_1, \ldots, X_n be i.i.d. $N(\theta, M)$, where M is a fixed constant $0 < M < \infty$. Under squared error loss, derive a minimax estimator of θ , where $\theta \in \Theta$, $\Theta = (-\infty, \infty)$. Is it admissible? Is it unique?

(11) [10 Points]

Let $\mathbb{X}_1, \dots, \mathbb{X}_n$ be i.i.d. F, where $F \in F_M = \{F: \ V_F \leq M\}$, where V_F is the variance of the distribution F and M is a fixed constant $0 < M < \infty$. Consider the problem of estimating the mean, θ_F , of F under squared error loss.

Show that $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ is the unique minimax estimator.

Let $X = (X_1, \dots, X_n)'$ have i.i.d. clements with p.d.f.

$$f(x;\theta,\beta) = \beta^{-1}I_{(\alpha,\infty)}(x)\exp\left[\frac{-(x-\theta)}{\beta}\right], \theta, \beta > 0$$
.

Let G be the group of transformations defined by

$$G = \{g_c : c \in \mathbb{R}\}, \text{ where}$$

$$E_{c}(x) = x + c1$$
, where $1 = (1, 1, ..., 1)$ and $c \in \mathbb{R}$.

(1) [5 pts] Show that a maximal invariant with respect to G is

$$X_{(2)} - X_{(1)}, X_{(3)} - X_{(2)}, \dots, X_{(n)} - X_{(n-1)}$$

where $X_{(1)} < X_{(2)} < \dots < X_{(n)}$ are the order statistics.

- [5 pts] Show that $D_i = (n-i+1)(X_{(i)} X_{(i-1)}), i = 2, ..., n,$ are i.i.d. with p.d.f. $\frac{1}{\beta} \exp(\frac{x}{\beta}) I(x)$.
- (iii) [10 pts] Derive the UMP invariant test of size an, 0 < an < 1, of

 $H_0: \beta \le 1 \text{ vs } H_1: \beta > 1$. Be sure to include a justification of the UMP invariant property of your test.

[20 Points]

Let (Y, Xi), i=1,...,n, be i.i.d. random vectors with mean

$$\Sigma = \begin{pmatrix} \mu^2 & \mu \delta^2 \\ \mu \delta^2 & \delta^2 \end{pmatrix}$$

(i) [12 pts] Discuss the asymptotic properties (consistency and asymptotic distribution, suitability normalized) of

$$T_n = \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^n X_i}$$

(ii) [8 pts] Derive a "large-sample" test of

$$H_0: \mu = 1$$

for 0 < a < 1 . (Here a is the level of significance.)

- 10. Choose either (a) or (b).
 - (a) [20 Points]

Let $X = (X_1, X_2, X_3)^t$ be a trivariate normal with

$$EX_1 = 3\theta, \quad \theta > 0,$$

 $EX_1 = 0, \quad \text{if } i = 2.3$

and dispersion matrix

$$\Sigma = \begin{bmatrix} 2+0^2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

The joint density of $X = (X_1, X_2, X_3)^t$ is

$$\frac{1}{\theta(2\pi)^{3/2}}\exp\left(-\frac{1}{2}\left[\frac{3^2}{2}(\overline{x}-\theta)^2+\sum_{i=2}^3 x_i^2\right],\ -\infty < x_1, x_2, x_3 < \infty \ .$$

Let θ_0 and $\theta_1(\theta_1>\theta_0)$ be two distinct parameter values. Show that a U.M.P. test of size $\alpha_0, 0<\alpha_0<1$, for $\theta_0: \theta=\theta_0$ vs $\theta_1: \theta\geq \theta_1$ does not exist.

(b) Let X_1, X_2, \dots, X_n be i.i.d. with common density

$$\frac{1}{\beta} \exp\left(\frac{-(x-\theta)}{\beta}\right)$$
 for $x \ge \theta$, θ , $\beta > 0$.

(i) [15 pts] Show that the U.MP.U. test of size α_0 , $0 < \alpha_0 < 1$ for H_0 : $\beta = 1$ vs H_1 : $\beta \neq 1$, has the acceptance region

$$C_{1\alpha_0} \leq 2 \sum_{i=1}^{n} [X_i - \min(X_1, \dots, X_n)] \leq C_{2\alpha_0}$$
.

(Be sure to indicate how $C_{1\alpha_0}$ and $C_{2\alpha_0}$ could be determined.)

(ii) [5 pts] What is the distribution of the test statistic under H₀?