COMPREHENSIVE EXAM

Statistical Inference

August 21, 1987

This is a closed book, closed notes exam. Please start all problems on a new sheet of paper.

- 1. Students seeking a Master's Level Pass may attempt any five problems.
- Students seeking a Ph.D. Level Pass should attempt problems 6 through 10.
- 3. Students seeking a pass at both levels must clearly designate those problems to be considered for a Master's Pass.

Part I: Students seeking a M.S. Level Pass should first attempt Problems 1-5.

1. [10 Points]

Let Y_1 , Y_2 , and Y_3 be independent identically distributed exponential random variables with mean λ . State the distributions of the following random variables (specify all parameters):

(a)
$$\frac{Y_1 + Y_2 + Y_3}{3}$$

(b)
$$\frac{2Y_1}{Y_2+Y_3}$$

(c)
$$\frac{Y_1}{Y_1 + Y_2}$$

(d)
$$min(Y_1, Y_2, Y_3)$$

2. [15 Points]

Let X_1 and X_2 be independent identically distributed random variables with probability density function $f(x) = 1/x^2$, $1 \le x < \infty$.

- (a) Find the joint probability density function of $U = X_1 X_2$ and $V = X_1$.
- (b) Find the marginal probability density function of U.
- (c) Are U and V independent? Why?
- (d) Does the moment generating function of X1 exist? Why?

3. a. [10 Points]

State and prove the Neyman-Pearson Lemma (give the version including randomized tests).

b. [15 Points]

Consider the family of discrete distributions specified below:

$$\{f(x;\theta): \theta \in \{1,2,3,4\}, x \in \{1,2,3\}\}.$$

		Value of x		
		1	2	3
	1	.5	.3	.2
Value of	2	.7	32	.1
θ	3	.4	.3	.3
	4	.1	.8	.1

- (i) Determine a level $\alpha = .10$ most powerful test of H_0 : $\theta = 1$ vs. H_a : $\theta = 2$.
- (ii) Determine a level α= 10 uniformly most powerful test (if it exists) for the hypothesis specified below. If no uniformly most powerful test exists, explain why it does not exist.

$$H_0: \theta=3$$
, $H_a: \theta<3$

(iii) Obtain the level $\alpha=.10$ Likelihood Ratio Test of H_0 : $\theta=2$ vs. H_a : $\theta\neq 2$.

4. [25 Points]

Let Y_1, \ldots, Y_n be independent random variables such that the probability density function of Y_i $(1 \le i \le n)$ is

$$f_i(y;\beta) = (2\pi)^{-\frac{1}{2}} \exp\{-(y-x_i\beta)^2/2\}, -\infty < y < \infty,$$

where the x_i are known constants such that $\sum_{i=1}^n x_i^2 > 0$ and $\beta \in (-\infty, \infty)$ is an unknown parameter.

(a) Show that the maximum likelihood estimator of β is

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}.$$

- (b) Show that $\hat{\beta}$ is sufficient for β .
- (c) Obtain the minimum variance unbiased estimator of β^2 . Hint: You may assume that $\hat{\beta}$ has a complete family of distributions.
- (d) Show that the joint pdf of Y₁,..., Y_n has a monotone likelihood ratio with respect to β̂.
- (e) Obtain the level α (0< α <1) uniformly most powerful test of H_0 : $\beta \le \beta_0$ vs. H_s : $\beta > \beta_0$.

5. [25 Points]

Let X_1, \ldots, X_n be independent random variables with probability density function

$$f\left(x;\theta\right) = \frac{\theta^{\alpha}}{\Gamma(\alpha)} \, x^{\alpha-1} e^{-\theta x} \, , \quad x > 0$$

where $\alpha > 0$ is a known constant and $\theta > 0$ is unknown.

- (a) Show that \overline{X}/α is the maximum likelihood estimator of θ^{-1} .
- (b) Obtain the Fisher-Information of X_1, \ldots, X_n . (You may assume the regularity conditions hold.)
- (c) Use (b) to show that X/α is the minimum variance unbiased estimator of θ⁻¹.
- (d) Suppose that θ has the prior probability density function

$$g\left(\theta;\tau,\lambda\right) = \frac{\lambda^{\tau}}{\Gamma(\tau)} \, \theta^{s-1} e^{-\lambda \theta} \,, \ \theta > 0 \,,$$

where $\tau > 0$ and $\lambda > 0$ are known constants. Show that the Bayes estimator of θ^{-1} under the loss function $L(\theta,a) = (a^{-1} - \theta)^2$ is

$$\hat{d}_b = \frac{\lambda + n\bar{X}}{\tau + n\alpha}$$

(e) Discuss the relationship between the maximum likelihood estimator and \hat{d}_k as the sample size (n) goes to infinity.

Part II: Students seeking a Ph.D. pass should attempt Problems 6-10 inclusive.

6. [20 Points]

Let X_1, \ldots, X_n be a independent and identically distributed random variables with density

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \ \theta > 0, \\ 0, & \text{elsewhere}. \end{cases}$$

We wish to test H_0 : $\theta = 1$ against H_1 : $\theta < 1$.

- (a) Obtain a uniformly most powerful test of H_0 against H_1 at level of significance α , $0 < \alpha < 1$.
- (b) Obtain a uniformly most accurate 1-α lower confidence bound for θ.

7. [20 Points]

Let X and Y be independently distributed as Poisson random variables with parameters λ and μ , respectively.

- (a) Find the UMP unbiased test of H₀: μ=λ against H₁: μ≠λ. Also give an analytical expression for the power of the above test.
- (b) Obtain the uniformly most accurate unbiased confidence interval for μ/λ.

8. [20 Points]

(a) Let X_1, \ldots, X_n be independent and identically distributed random variables with density functions $f_i(x-\theta)$, $i=1,\ldots,n$, where θ denotes the unknown location parameter. We wish to test

$$H_0: f(x) = \begin{cases} 1, & \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}, \\ 0, & \text{elsewhere} \end{cases}$$

$$H_1$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$, $-\infty < x < \infty$.

Construct a most powerful univariant test of Ho against H1.

(b) Let X_1, \ldots, X_n be independent and identically distributed $N(\mu, \sigma^2)$ random variables. Find the lower bounds for variances of unbiased estimators of $\theta_1 = \mu$, $\theta_2 = \sigma^2$. Do the minimum variance unbiased estimators attain these lower bounds? Justify your answer.

$$x_1 - x_n \rightarrow x_n, x_n - x_1 \cdots$$

$$x_1, x_2-x_1, \cdots x_n-x_1$$

- 9. [20 Points]
 - (a) Suppose X has density $f(x,\theta)$ and the parameter Θ has prior density $\lambda(\theta)$. Show that for the loss function

$$L(\theta,d) = \omega(\theta)[d-g(\theta)]^2, \ \omega(\theta) > 0,$$

the Bayes estimator of a real-valued function $g(\theta)$ is given by

$$\delta_{\lambda}(x) = \frac{E[\omega(\Theta)g(\Theta)|x]}{E[\omega(\Theta)|x]}.$$

(b) Let X have binomial distribution with n (known) trials and probability of 'success' θ . Obtain the Bayes estimator of θ for the loss function $L(\theta,d) = \frac{(d-\theta)^2}{\theta(1-\theta)}$, $0 < \theta < 1$, for the prior density

$$\lambda(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, \quad 0 < \theta < 1,$$

where $\alpha > 0$, $\beta > 0$.

(c) Hence show that the MLE $\delta(X) = \frac{X}{n}$ is a minimax estimator of θ .

10. [20 Points]

Let $X = (Y, \mathbb{Z}) = (Y_1, \dots, Y_m; \mathbb{Z}_1, \dots, \mathbb{Z}_n)$, where Y_i 's and \mathbb{Z}_j 's are independently distributed as $N(\theta_1, 1)$ and $N(\theta_2, 1)$, respectively, for $i = 1, \dots, m$ and $j = 1, \dots, n$. Consider the transformations

$$X' = g_{a,b}(X), \quad -\infty < a,b < \infty,$$

where

$$Y_i^n = Y_i + a$$
, $Z_j^n = Z_j + b$, $i = 1, \dots, m$, $j = 1, \dots, n$.

Let $\theta = (\theta_1, \theta_2)$ and it is desired to estimate $h(\theta) = \theta_1 - \theta_2$.

- State the induced transformations g_{a,b} on the parametric space Ω of θ and g_{a,b} on the space of values of estimators δ(X).
- (ii) Show that the loss function $L(\theta;d)$ to estimate $h(\theta)$ is inviariant if and only if $L(\theta;d) = P(d-\theta_1+\theta_2)$, where P is some function.
- (iii) When is the estimator $\delta(X)$ of $h(\theta)$ said to be equivariant?
- (iv) Prove that the risk function of any equivariant estimator is independent of θ.
- (v) Give any equivariant estimator of $L(\theta)$ based on the complete sufficient statistic. What is your guess for the MRE (minimum risk equivariant) estimator for $k(\theta)$?

(Hint: Proofs are not required for part (v).)