COMPREHENSIVE EXAMINATION

Statistical Inference

Wednesday, August 14, 1991 9:00 a.m. – 11:00 a.m.

This is a closed-book, closed-notes exam. Please start each problem on a new sheet of paper.

- 1. Student seeking a Master's Level Pass may attempt any five problems from problems 1-6.
- 2. Students seeking a Ph.D. Level Pass must attempt problems 6-10.

- 1. (20 points)
 - [7] (a) X and Y are independent N(0,1) variables. Find the joint distribution

$$U = \frac{X}{Y}, \qquad V = X + Y.$$

- [6] (b) Find also the marginal distribution of U.
- [2] (c) Obtain the conditional distribution of V, given U = u
- [3] (d) Identify the distribution of U in (b), and state, without derivation, the marginal distribution of V.
- [2] (e) Are U and V independently distributed?
- 2. (20 points)
 - [2] (a) The cumulative distribution function (c.d.f.) of a random variable X is

$$F(x; \theta_1, \theta_2) = \begin{cases} 0 & \text{for } x < \theta_2 \\ 1 - \exp\{-\frac{(x - \theta_2)}{\theta_1}\} & \text{for } x \ge \theta_2 \end{cases}$$

where θ_1, θ_2 are unknown parameters, $\theta_1 > 0$. Obtain the probability density function (p.d.f.) of X.

- [4] (b) If $(X_1, X_2, ..., X_n)$ is random sample from the population in (a) above, derive the maximum likelihood estimates of θ_1, θ_2 .
- [4] (c) For the sample in (b) above, find (jointly) minimal sufficient statistics.
- [4] (d) Assume now $\theta_2 = 0$. Find the Cramer-Rao lower bound for the variance of an unbiased estimator of θ_1 .
- [6] (e) If $\theta_2 = 0$, check whether the MLE of θ_1 is UMVUE.
- 3. (20 points)

Let the distribution of X given θ be Binomial (n, θ) and let θ have the following beta distribution.

$$\pi(\theta) = \frac{\theta^{a-1} (1 - \theta)^{b-1}}{B(a, b)} I(0 \le \theta \le 1),$$

where a > 1 and b > 0 are known constants. Using the loss function

$$l(\theta,a) = \frac{(\theta-a)^2}{\theta}$$

find the Bayes estimator of θ .

4. (20 points)

Let $X_1, ..., X_n$ be iid with density

$$f(x) = ax^{a-1}I(0 \le x \le 1),$$

where a > 0.

(a) Show that the test

$$\phi(X_1, ..., X_n) = \begin{cases} 1 & \sum \ln X_i > k; \\ 0 & \text{otherwise} \end{cases}$$

is UMP of its size for testing $H_0: a \leq 1$ versus $H_1: a > 1$.

- (b) Find k so that the test has size α (0 < α < 1) (Hint: consider the distribution of $-\ln X_i$).
- 5. (20 points)

Let $X_1, ..., X_n$ be iid with density

$$f(x) = \lambda \exp(-\lambda x) I(x \ge 0),$$

where $\lambda > 0$.

Derive the generalized likelihood ratio test of $H_0: \lambda = 1$ versus $H_1: \lambda \neq 1$ and show that it is equivalent to the test

$$\phi(X_1, ..., X_n) = \begin{cases} 1 & \text{if } \bar{X} < c_1 \text{ or } \bar{X} > c_2; \\ 0 & \text{otherwise} \end{cases}$$

where c_1 and c_2 satisfy

$$c_1 \exp(-c_1) = c_2 \exp(-c_2).$$

6. (20 points)

- [3] (a) Define completeness and bounded completeness of a statistic for a real parameter.
- [5] (b) Show, by means of an example, that bounded completeness does not imply completeness.
- [6] (c) Let X_1, \dots, X_n be iid $N(\theta, 1), \theta \in (-\infty, \infty)$. Obtain the uniformly minimum variance unbiased estimator of θ^2 .
- [6] (d) Let $X \sim f(x-\theta)$, $\theta \in (-\infty, \infty)$ with $Var(X) < \infty$. Consider estimating θ under squared error loss. Show that the best equivariant location estimator is also UMVUE if X is a complete sufficient statistic for θ .

7. (20 points)

Let X be distributed according to $Bin(9,\theta)$ with $\theta \in \Theta = (0,1)$. Consider the problem of estimating θ with a loss of the form $L(\theta,a) = \omega(\theta)(\theta-a)^2$ where $\theta \in \Theta = (0,1)$ and $\omega(\theta) > 0$.

[7] (a) Show that the natural estimator $\delta_0(X) = \frac{X}{9}$ is not Bayes with respect to any prior probability distribution if $\omega(\theta) \equiv 1$.

[7] (b) Assume that $\omega(\theta) \equiv 4.5$. Derive the Bayes estimator with respect to the prior distribution of Beta($\frac{3}{2}$, $\frac{3}{2}$). Is this estimator minimax? (Justify your answer)

[6] (c) Prove that the estimator $\delta_1(X) \equiv 1$ is minimax if $\omega(\theta) = \frac{1}{(1-\theta)^2}$.

8. (20 points)

The cumulative distribution function of a random variable X is given by

$$G_{\beta}(x) = 1 - [1 - F(x)]^{\beta}, \quad \beta > 0$$

where β is an unknown parameter and F is an absolutely continuous distribution function.

[10] (a) Assuming $F(\cdot)$ is known, find the UMP level α (0 < α < 1) test for $H_0: \beta = 1 \ vs \ H_A: \beta > 1$.

[10] (b) Derive the locally most powerful level α (0 < α < 1) rank test for $H_0: \beta = 1$ vs $H_A: \beta > 1$.

9. (20 points)

Let $(X_1, Y_1)...(X_n, Y_n)$ be iid random vectors with $EX_1 = EY_1 = 0$, $Var(X_1) = Var(Y_1) = 1$. In addition, suppose that X_i is uncorrelated with Y_i for $i = 1, 2 \cdots, n$.

Define the sample correlation-coefficient r to be

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{S_x^2} \sqrt{S_y^2}} \quad \text{where}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad and \quad S_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
$$S_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

[10] (a) Assuming that $E|X|^4 < \infty$ show that

$$\sqrt{n}(S_x-1) \stackrel{D}{\to} N(0,\tau^2)$$

for some suitable $\tau^2 > 0$. Also determine the value of τ^2 .

[10] (b) Prove that \sqrt{n} r is also asymptotically normal and obtain the variance of the limiting distribution.

10. (20 points)

Let $X_1,...,X_n$ be iid random variables with a common discrete distribution. Let $X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$ be the order statistics.

[7] (a) Find the conditional distribution of $(X_1, ..., X_n)$ given $X_{(1)}, ..., X_{(n)}$.

[8] (b) Let C denote the class of all unbiased estimators with finite variance of a real parameter $\theta \in \Theta$,

i.e

$$C = \left\{ S(X_1, ..., X_n) \middle| \begin{array}{l} ES(X_1, ..., X_n) = \theta \text{ and} \\ V(S) < \infty \text{ for all } \theta \in \Theta \end{array} \right\}$$

Now for a given $S \in \mathcal{C}$, let

$$ES = \frac{1}{n!} \sum S(X_{i_1}, ..., X_{i_n})$$

where the summation is over all permutations (i_1, \dots, i_n) of $(1, 2, \dots, n)$, and set $C^* = \{S^* | S^* = \mathbb{E}S \text{ for some } S \in \mathcal{C}\}$. Note $C^* \subset \mathcal{C}$. Show that, for the decision problem with $\Theta = \mathcal{A} = \mathbb{R}^1$ and squared error loss, C^* is essentially complete relative to C.

[5] (c) Is C^* complete? Justify your answer.