Inference Examination

June 3, 1998 9:00 to 11:00

- 1. Answer all problems.
- 2. Start each problem on a new sheet of paper with your name.
- 3. Number of points for each problem is shown in parenthesis. Maximum possible is 100.

1. (18 points) Suppose $X_i \sim f_i(x, \theta), i = 1, 2, \dots, n$ are independent random variables where

$$f_i(x, \theta) = a_i \theta (1 - x)^{a_i \theta - 1}$$
 for $0 < x < 1$.

where $a_i > 0$ are known constants and $\theta > 0$ is the parameter.

- (a) Find the MLE of $\eta = \log \theta$ and construct an asymptotic 95% confidence interval for η based on the central limit theorem for MLE.
- (b) Obtain a 95% confidence interval for θ based on the result in (a).
- (c) Assume that θ is also a random variable with $\exp(1)$ distribution. Find the Bayes estimator of θ based on the observations X_1, \dots, X_n if the loss function is squared error loss.

(14 points) In n independent Bernoulli trials, let X_i = 0 or 1 according as the ith trial
is a success or failure. Also let

$$T=\sum_{i=1}^{n}X_{i}.$$

Assume the probability of success at each trial is p.

Find the UMVU (uniformly minimum variance unbiased) estimator of p^2 , using the fact that an unbiased estimator of p^2 is δ given by

$$\delta = \begin{cases} 1, & \text{if } X_1 = 1 \text{ and } X_2 = 1 \\ 0, & \text{otherwise} \end{cases}$$

3. (18 points) Suppose X_1, X_2, X_3 are independent normal random variables such that

$$X_1 \sim N(3\theta + 1, \sigma^2 = 2)$$

$$X_2 \sim N(-2\theta, \sigma^2 = 1)$$

$$X_3 \sim N(\theta - 4, \sigma^2 = 4)$$

(a) Find a most powerful size $\alpha = 0.05$ test for

$$H_0: \theta = 2, \quad vs \quad H_A: \theta = 1$$

Justify your answer.

(b) Find a UMP test with $\alpha = 0.05$ for

$$H_0: \theta \geq 2, \quad vs \quad H_A: \theta < 2$$

Justify your answer.

- 4. (a) (20 points) When do we say that a family of densities $f(x, \theta)$ or probability mass function $p(x, \theta)$ has Monotone Likelihood Ratio property? (Define it carefully)
- (b) Let X_1, \dots, X_n be a random sample from the probability density given by

$$f(x,\theta) = \theta x e^{-x^2 \theta}, \quad x > 0 \quad \theta > 0,$$

i. Construct a UMP test of

$$H_0: heta \leq heta_0 \quad ext{against} \quad H_1: heta > heta_0$$

\$ \$. \$ (T) 2. HA 2 MLR

based on the observations X_1, \dots, X_n .

Justify that the test you obtained is indeed UMP. Base your argument on the Neyman-Pearson lemma only.

ii. Obtain an explicit expression (in terms of a known distribution) for the critical point of the test when n = 10 and $\alpha = 0.05$.

5. (15 points) Let $X_1, X_2, \dots X_n$ be i.i.d. random variables with density function

$$f(x) = (\theta + 1)x^{\theta}$$
; $0 < x < 1, \theta > 0.$

- (a) Find the distribution of $X_{(n)}$, the maximum of $X_1, X_2, \cdots X_n$.
- (b) Find a pivotal quantity based on $X_{(n)}$ and construct a $(1-\alpha)100\%$ confidence interval for θ based on the pivotal.

6. (15 points) Consider the Option-Pricing Model for stock option prices over a given period of time which is divided into equally spaced time points: t₀ < t₁ < ··· < t_n. Let S_i denote the price of the stock at t_i (i = 0, 1, ··· n) with S₀ = S. From time t_i to time t_{i+1} the price of the stock will either increase by a factor of (1 + ρ) with probability θ or decrease by a factor (1 - ρ) with probability 1 - θ, where 0 < θ < 1. For example</p>

$$S_1 = \begin{cases} S(1+\rho) & \text{with probability } \theta; \\ S(1-\rho) & \text{with probability } 1-\theta. \end{cases}$$

Assume that both S and ρ are known $(S > 0 \text{ and } 1 > \rho > 0)$ and we want to estimate θ . Assume changes in price of S over successive time periods are mutually independent.

- (a) Find a 1 dimensional sufficient statistic for estimating θ , justify your answer.
- (b) What is the probability distribution of S_n ?
- (c) Compute the expected value of S_n .

(hint: let $X_1, X_2, \dots X_n$ be the indicators of changes at each stage. That is $X_i = 1$ if the stock price increases from time t_{i-1} to t_i and 0 otherwise.)