Qualifying Examination Advanced Inference

June 3, 2002

Choose 5 out of the following 6 problems.

Full credit will be given only if your results are justified and details are shown.

1. The following table contains the risk $R(\theta_i, d_j)$ for different combinations of parameters θ_i , i = 1, 2, and decision rules d_j , j = 1, ..., 3.

$$\begin{array}{c|cccc} & d_1 & d_2 & d_3 \\ \hline \theta_1 & 1 & 2 & 2 \\ \theta_2 & 2 & 1 & 2 \\ \end{array}$$

- (a) Draw the risk set.
- (b) Find the set of admissible rules.
- (c) Geometrically, find the Bayes rule(s) for the prior $\pi = (1/3, 2/3)$, where $P_{\pi}(\theta = \theta_1) = 1/3$ and $P_{\pi}(\theta = \theta_2) = 2/3$.
- (d) Numerically, find the Bayes rule(s) and the Bayes risk for the prior given in (c).
- (e) Is this Bayes rule admissible? Why?
- (f) Find the least favorable prior distribution geometrically and numerically.

- 2. Let D^* be the space of all decision rules, and let $\mathcal B$ denote the class of all Bayes rules.
 - (a) Show that if \mathcal{B} is essentially complete in D^* then \mathcal{B} is complete in D^* .
 - (b) Is this also true for the class \mathcal{B}^E of extended Bayes rules? I.e., does the following hold: If \mathcal{B}^E is essentially complete in D^* then \mathcal{B}^E is complete in D^* .
- 3. (a) State all the good and bad (if any) properties of the maximum likelihood estimator of an unknown parameter (one dimensional case).

(b) Let
$$\Theta = \mathbb{R}$$
, $L(\theta, a) = (\theta - a)^2$, $X \sim N(\theta, 1)$.

57 i. Find the maximum likelihood estimator of θ , based on one observation, X.

ii. Show that the maximum likelihood estimator obtained in (i) is not a Bayes rule with respect to any prior π that is a non-degenerate probability distribution on Θ .

 ψ_0^2 iii. Can a Bayes rule with respect to a prior π be unbiased in general? Why?

2% (4. Let $f(x,\theta)$ be a family of densities, with $\theta \in \Theta$ where Θ is an open subset of \mathbb{R}^2 .

Suppose X_1, X_2, \dots, X_n are iid random variables from the density $f(x, \theta_0)$ for a fixed θ_0 in the interior of Θ .

Show that (under regularity conditions*) for any given $\theta \in \Theta$ and $\theta \neq \theta_0$, we have

$$P(L_n(\theta) < L_n(\theta_0)) \to 1 \quad as \ n \to \infty$$

where $L_n(\theta)$ is the likelihood function $\prod_{i=1}^n f(X_i, \theta)$.

*Specify the regularity conditions needed and where they are needed.

5. Suppose $X_1, X_2, \dots X_n$ are iid r.v.s from an exponential distribution with parameter $\lambda > 0$. I.e..

$$f(\mathbf{z}, \lambda) = \lambda \exp(-\lambda t)$$
 for $t > 0$.

- 4 (a) Find a complete, sufficient statistic for λ .
- (b) Consider the nonrandomized decision rule $d(x_1, \ldots, x_n) = x_1$. Can this decision rule be improved by using the sufficient statistic? What assumptions have to be made?
- (c) Show that

$$2\log L_n(\hat{\lambda}) - 2\log L_n(\lambda)$$

converges in distribution to a ... distribution (to which one?), where $\hat{\lambda}$ is the MLE of λ and $L_n(\lambda) = \prod_{i=1}^n f(X_i, \lambda)$.

- Let $\Theta = \mathcal{A} = \mathbb{R}$, and let $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} N(\theta, 1)$. Let the loss function be $L(\theta, a) = (\theta a)^2$ (squared error loss).
 - (a) Find a Bayes rule of estimating θ with respect to a $N(0, \sigma^2)$ prior distribution.
- (b) Prove that the estimator $d(x) = \bar{x}$ is minimax.

$$\bar{\chi} \frac{\sigma^2}{1+\sigma^2}$$

$$N(0,\sigma^2).N(0,1) = joint = h(0,x) = \frac{1}{2\pi\sigma}e^{-\frac{(x-0)^2}{2}}$$

$$g(o(x) = N(\frac{xo^2}{1+o^2}, \sqrt{\frac{\sigma^2}{1+o^2}} = sd)$$