Comprehensive Examination in

Probability and Stochastic Processes

May, 2007

You are to answer 6 problems; 3 problems must be chosen from each section.

This exam has two sections. Section 1 contains problems on Probability and Section 2 contains problems on Stochastic Processes.

Closed book, closed notes. No computer. Calculator, if needed, are allowed.

Section 1: Probability

Answer three questions from this section. Indicate which 3 you chose.

- 1. Suppose random variables (X, Y) are independent, both with exponential $(\lambda = 1)$ distribution.
 - (a) find the joint distribution or pdf of (U, V) with

$$U = X + Y$$
, $V = X - Y$.

- (b) find the marginal distribution or pdf of V = X Y.
- 2. Suppose $X_1, X_2, \dots, X_n, \dots$ is a sequence of exponential $(\lambda = 1)$ random variables.
 - (a) Show that

$$\frac{X_n}{n} \longrightarrow 0$$

in probability as $n \to \infty$.

(b) Show that

$$\frac{X_n}{n} \longrightarrow 0$$

almost surely as $n \to \infty$.

(c) Show that

$$\frac{\max_{1 \le i \le n} X_i}{n} \longrightarrow 0$$

in probability as $n \to \infty$.

3. (a) For a negative random variable X with $E|X| < \infty$, show that

$$-\int_{-\infty}^{0} F(t)dt$$

is finite and is equal to E(X) where F(t) is the CDF of X.

(b) For a non-negative random variable Y, with $E(Y) < \infty$ show

$$\sum_{n=1}^{\infty} (1 - F(n)) \le E(Y) \le \sum_{n=0}^{\infty} (1 - F(n))$$

where F is the CDF of Y.

- (c) What if the expectations (E|X|, E(Y)) are infinite in (a), (b)? Does the equality [inequality] still hold?
- 4. Suppose X is a binomial (n, p) random variable.
 - (a) compute the moment generating function of X.
 - (b) If Y is a binomial (m, p) random variable and independent of X, show that X + Y is binomial (n + m, p).
 - (c) Suppose $n \to \infty$ and $p = p_n \to 0$ in such a way that $n \cdot p_n \to \lambda > 0$. Show that the binomial random variable X converges to a Poisson random variable, as $n \to \infty$.
 - (d) Does the "converge" above imply P(X=2) converge to a limit (as $n \to \infty$)? Justify your answer.

Section 2: Stochastic Processes

Answer three questions from this part. Indicate on your exam paper which 3 you chose.

Question 1: True or False Mark whether each of the following statement is true (T) or false (F). State a reason for each question. If the answer is TRUE, also specify the rate.

- (a) Let $\{X_t, t \geq 0\}$ and $\{Y_t, t \geq 0\}$ be independent Poisson processes with parameter λ and β . Define $\{Z_t, t \geq 0\}$ such that $Z_t = X_t + Y_t$. $\{Z_t, t \geq 0\}$ is a Poisson process.
- (b) Let $\{X_t, t \geq 0\}$ be a Poisson process with parameter λ . Define $\{Z_t, t \geq 0\}$ such that $Z_t = k \cdot X_t$ where k > 1 is a constant. $\{Z_t, t \geq 0\}$ is a Poisson process.
- (c) Let $\{X_t, t \geq 0\}$ be a Poisson process with parameter λ . Define $\{Z_t, t \geq 0\}$ such that $Z_t = X_t + k$ where k > 0 is a constant. $\{Z_t, t \geq 0\}$ is a Poisson process.
- (d) Let $\{X_t, t \geq 0\}$ and $\{Y_t, t \geq 0\}$ be independent Poisson processes with parameter $\lambda > 0$ and $\beta > 0$. Define $\{Z_t, t \geq 0\}$ such that $Z_t = X_t Y_t$. $\{Z_t, t \geq 0\}$ is a Poisson process.
- (e) Let $\{X_t, t \geq 0\}$ be a Poisson process with parameter λ . Define $\{Z_t, t \geq 0\}$ such that $Z_t = X_{k \cdot t}$, where k > 0 is a constant. $\{Z_t, t \geq 0\}$ is a Poisson process.
- (f) Let $\{X_t, t \geq 0\}$ be a Poisson process with parameter λ . Define $\{Z_t, t \geq 0\}$ such that $Z_t = X_{t^2}$. $\{Z_t, t \geq 0\}$ is a Poisson process.

Question 2

(a) Given the following transition probability matrix

$$P = \begin{pmatrix} - & \frac{1}{5} \times \frac{1}{4} & \frac{1}{4} & \frac{1}{5} \times \frac{1}{4} \\ \frac{1}{5} \times \frac{1}{4} & - & \frac{1}{5} \times \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{5} \times \frac{1}{4} & - & \frac{1}{5} \times \frac{1}{4} \\ \frac{1}{5} \times \frac{1}{4} & \frac{1}{4} & \frac{1}{5} \times \frac{1}{4} & - \end{pmatrix},$$

(diagonal entries are set so that rows sum to 1), is this process time-reversible? What is the stationary distribution?

(b) A matrix $P = \{P_{i,j}\}$ is called *stochastic* if $P_{i,j} \geq 0$ for all i, j and $\sum_j P_{i,j} = 1$ for all i. A matrix P is called *doubly stochastic* if in addition to the above, $\sum_i P_{i,j} = 1$ for all j. Prove that if a finite irreducible Markov chain has doubly stochastic transition probability matrix, the stationary probabilities π_i for all i exist and are equal.

Question 3

Consider a Poisson process $\{X_t, t \geq 0\}$ with a parameter λ .

- (a) Write down the rate matrix A for the process.
- (b) Let $P_{i,j}(t)$ be the transition probability from a state i to state j. Write down Kolmogorov's forward and backward equations for this process, $\{X_t, t \geq 0\}$.
- (c) What is the probability that k events occur in a time interval (s, s + t] where s, t > 0 for the Poisson process, $\{X_t, t \ge 0\}$.

Question 4

- (a) Consider a discrete time Markov chain. State the detailed balance equations and balance equations for a discrete time Markov chain. Prove that if the Markov chain satisfies the detailed balance equations, then it satisfies the balance equations.
- (b) State the detailed balance equations and balance equations for a continuous time Markov chain. Prove that if the Markov chain satisfies the detailed balance equations, then it satisfies the balance equations.

Question 5

- (a) There is a mission planned to Mars and you are responsible for equipping the exploration craft with enough battery power to last t = 1 year upon arriving on the red planet. Suppose cells in the battery fail according to a single Poisson process (regardless of how many cells are alive in the battery) with the fixed rate $\lambda = 2$ per year and the battery stops working when all cells have failed. If you equip the exploration craft with a 2-cell battery, what is the probability that the mission fails on account of your planning?
- (b) What is this probability if the failure rate is doubled during the cold Mars nights which last 50% of everyday during the 1-year mission? (Hint: For this problem, the rate in the night and the rate in the day differ).