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Abstract� The non�parametric Bayes estimator with Dirichlet process prior of a

survival function based on right censored data was considered by Susarla and Van

Ryzin ������ and many others� We obtain the non�parametric Bayes estimator of a

survival function when data are right� left or interval censored� The resulting Bayes
estimator with Dirichlet process prior has an explicit formula� In contrast� there is

no explicit formula known for the non�parametric maximum likelihood estimator

�NPMLE� with such data� In fact� we show that the NPMLE with doubly	interval
censored data cannot� in general� be the limit of Bayes estimators for any sequence

of priors� Several examples are given� showing that the NPMLE and the non�

parametric Bayes estimator may or may not be the same� even when the prior is


non�informative��

Key words and phrases� Dirichlet process prior� non�informative prior� NPMLE�

square error loss�

�� Introduction� Notation and Preliminary

Suppose lifetimes X�� � � � �Xn are non�negative and i�i�d� with a distribution

F ���� However� these lifetimes are subject to censoring� In the case of right

censoring� we only observe

Zi �

��
�
Xi� if Xi � Ci�

Ci� if Xi � Ci�
and �i �

��
�
�� if Xi � Ci�

�� if Xi � Ci�
�����

where Ci are the �right� censoring times�

A generalization of right censoring is double censoring �Chang and Yang

��	
��� Gu and Zhang ��		���� In the case of double censoring we only observe

Zi �

�����
����
Xi� if Yi � Xi � Ci�

Ci� if Xi � Ci�

Yi� if Xi � Yi�

and �i �

�����
����
�� if Yi � Xi � Ci�

�� if Xi � Ci�

� if Xi � Yi�

����

Here �Ci� Yi�� i � �� � � � � n� are the left and right censoring times� with Ci �

Yi� Let the observations be arranged such that Z�� � � � � Zk are the uncensored
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observations� i�e�� �� � �� � � � ��k � �� Notice that �Z�� � � � � Zk� is �X�� � � � � Xk��

while Zk��� � � � � Zn are the �either right or left� censored observations�

In the Bayesian estimation of F ���� we need not make assumptions about the

distributions of the left and right censoring times Ci and Yi� The calculations

are conditioned on the observed censoring times� Thus the observations can be

described in three parts Z�� � � � � Zk where Xi � Zi� Zk��� � � � � Zm where Xi � Zi�

and Zm��� � � � � Zn� where Xi � Zi�

Next we discuss interval censored data� The current status data� or case

� interval censored data� consist of an observed �inspection� time Ti and the

information whether Xi is larger than or less than Ti �the status of Xi� see

Huang and Wellner ��		����

Ti � �i �

��
�
�� if Xi � Ti�

� if Xi � Ti�

Usually the �inspection� times Ti are assumed i�i�d� Similar to the discussion

above� this i�i�d� assumption does not make a di�erence in the Bayesian analysis

and therefore the current status data is a special case of ����� where all the

observations are either left or right censored� i�e�� k � ��

In case  of interval censoring� we assume X�� � � � �Xk are observed exactly

�k non�random� and possibly zero�� and only the observations Xk��� � � � �Xn are

interval censored� Then we observe n�k intervals� With some abuse of notation�

they are denoted by �Lj� Zj� for j � k � �� � � � � n� We know that Lj � Xj � Zj�

Again notice that we do not need to make assumptions about the distribution

of Lj or Zj � Therefore this �ts both case  and case k of interval censoring in

Huang and Wellner ��		��� To make the notation consistent with the doubly

censored case� we let Z� � X�� � � � � Zk � Xk for directly observable outcomes�

interval censored outcomes are �Lj� Zj� for j � k � �� � � � � n� Notice that when

�Lj� Zj� � �a���� one has right censored data� and when �Lj� Zj� � ��� a�� left

censored data�

In Bayesian analysis� the probability F ��� is random� We assume in this

paper that F ��� is distributed as a Dirichlet process with parameter �� a measure

on the real line� Under the Dirichlet process prior assumption� the probability

measure P �A� �
R
A dF has the following property� given any partition of real

line A�� � � � � Au� the joint distribution of the random vector �P �A��� � � � � P �Au��

has a Dirichlet distribution with parameter given by ��A��� � � � � ��Au�� For more

discussion and properties of Dirichlet process prior� see Ferguson ��	���� Susarla

and Van Ryzin ��	��� and Ferguson� Phadia and Tiwari ��		��� Another pos�

sibility is to work with the cumulative hazard functions H�t�� A beta process
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prior on the space of the cumulative hazard function was introduced by Hjort

��		��� While using a beta process prior for right censored data works well� it

has no advantage over the Dirichlet process prior for doubly�interval censored

data� the likelihood of the data does not simplify by using the hazard function

with doubly censored data�

Using squared error loss� Susarla and Van Ryzin ��	��� obtained the Bayes

estimator for F ��� under a Dirichlet process prior when data are only subject

to right censoring� They also showed that when the weight parameter� �� of

the Dirichlet process prior approaches zero� the non�parametric Bayes estimator

reduces to the Kaplan�Meier estimator� the NPMLE� Some later papers studied

the consistency of the Bayes estimator �Susarla and Van Ryzin ��	�
�� and the

posterior distribution �Ghosh and Ramamoorthi ��		���� Hu�er and Doss ��			�

used Monte Carlo methods to compute the nonparametric Bayes estimator�

We obtain the Bayes estimator of � � F ��� when data are subject to both

right and left censoring� or are subject to interval censoring� The large sample

properties of this Bayes estimator are not discussed here� though it is not unrea�

sonable to expect that it is consistent� However� we show that for any sequence

of priors the nonparametric Bayes estimators under squared error loss cannot

always converge to the corresponding NPMLE with doubly censored data� This

is a bit surprising since� in most cases� MLEs are limits of Bayes estimators�

The Bayes estimator we obtain is more complicated than those with only

right censored data� especially when there are many left censored or interval

censored observations� Nevertheless� it has an explicit formula that can be eas�

ily programmed� In contrast� the nonparametric maximum likelihood estimator

�NPMLE� in the case of doubly censored data or interval censored data does

not have an explicit formula and its computation requires an iterative method�

See Turnbull ��	���� Chen and Zhou ����� and Fay ��			�� Besides� the Bayes

estimator is always uniquely de�ned while the NPMLE is often only de�ned up

to an equivalent class� This non�uniqueness of the NPMLE makes many impor�

tant statistics like the mean estimator di�cult to de�ne� The Bayes estimator

is also smoother than the NPMLE� On the other hand� there are consistency

results for the NPMLE �Gu and Zhang� ��		��� Groeneboom and Wellner ��		�

and Huang and Wellner ��		��� but we know very little of the consistency of

the Bayes estimators beyond the right censored� R� data case� In fact� R� Pruitt

gave an example of an inconsistent Bayes estimator with Dirichlet process prior

for right censored data in R��

To minimize the amount of new notation� we follow Susarla and Van Ryzin�s

��	���� hereafter SV� and we use their convention that all observations are posi�

tive� Obviously we can extend this to the case where observations have support

in ������ without much di�culty�
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�� Bayes Estimator with Right� Left�Interval Censored Observations

The Bayes estimator of � � F ��� under squared error loss of SV is the con�

ditional expectation of �� F given all the observations� Similar to SV the con�

ditional expectation is computed in two steps� �rst� given all the uncensored

observations we �nd the conditional distribution of � � F � second� given all the

censored observations we compute the conditional expectation� where the distri�

bution of those lifetimes before censoring is given in the �rst step�

The following theorem speci�es the conditional distribution of F ��� given all

the uncensored observations� which accomplishes the �rst step�

Theorem �� The posterior distribution of the random probability measure P

given ��� � �� Z��� � � � � ��k � �� Zk� is the Dirichlet process with parameter

� � ��
Pk

i
� �Zi � where �a is a unit measure on the point a�

Proof� The proof of this theorem is similar to SV ��	��� and Ferguson ��	����

We only sketch the proof for the doubly censored case� Furthermore� we only

give those calculations that di�er from the proof of Theorem � of SV ��	���� the

rest of the proof is the same as theirs and is not repeated here�

From ��� of Chang ��		��� the probability of �� � ��X � u� is �SC�u� �
SY �u��dP �X � u� � dG�u�� say� Recall the marginal distribution of X is

��u����R��� We computeZ
��
��Z�A

D��j��B�� � �u�B��� � � � � ��Bl� � �u�Bl��dG�u�

�

Z
�u�A

D��j��B�� � �u�B��� � � � � ��Bl� � �u�Bl���SC�u�� SY �u��d
��u�

��R��

�
lX

j
�

D�y�� � � � � ylj��j�� � � � � � �
�j�
l �

Z
�u�A�Bj 

�SC�u�� SY �u��d
��u�

��R��
�

On the other hand�

PfP �Bi� � yi� i � �� � � � � l� � � �� Z � A�g
�

Z �

u
�
PfP �Bi� � yi� i � �� � � � � l� X � �u� u� du� �Ag�SC�u�� SY �u��

�
lX

j
�

Z
��Bj �A � �u� u� du�

��R��
�SC�u�� SY �u��D�y�� � � � � ylj��j�� � � � � � �

�j�
l �

�
lX

j
�

D�y�� � � � � ylj��j�� � � � � � �
�j�
l �

Z
Bj�A

SC�u�� SY �u�

��R��
d��u� �

which is same as above�
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Now� the conditional expectation of � � F �u� � P �u��� is computed given
the remaining n � k � � censored observations� Zk����k��� � � � � Zn��n in the
doubly censored case� �Lk��� Zk���� � � � � �Ln� Zn� in the interval censored case�
Notice the originalXk��� � � � �Xn is now a random sample from a Dirichlet process
with parameter �� Let E� denote the expectation with respect to this Dirichlet
process�

���� Bayes estimator with one interval�left censored observation

To �x ideas and enhance readability� we �rst present in detail the Bayes
estimator with many right censored observations but only one interval censored
observation� denoted by �Lw� Zw�� �If Lw � � then this is left censored�� The
general case with many interval�left censored observations will be given later�

As in SV Corollary �� the conditional expectation� E�� of � � F �u� �
P �u��� � P �X � u� given all the right censored data and one interval cen�
sored observation is

�SD�u� �
E�fP �u���P �Lw� Zw�

Q
right�censored P �Zi���g

E�fP �Lw� Zw�
Q

right�censored P �Zi���g �

This is also the desired Bayes estimator of ��F �u�� We abbreviate the subscript
of right�censored to r � c and left�censored to l � c and interval�censored to i� c�
Straightforward calculation yields

�SD�u� �
E�P �u���fP �Lw���� P �Zw���gQr�c P �Zi���

E�fP �Lw���� P �Zw���gQr�c P �Zi���

�
E�fP �u���P �Lw���

Q
r�cP �Zi���g�E�fP �u���P �Zw ���

Q
r�cP �Zi���g

E�fP �Lw���
Q
r�cP �Zi���g�E�fP �Zw���

Q
r�cP �Zi���g

�
E� �E�

E� �E�

�

The last four expectations are all of the same type and can be computed explicitly
by the Lemma below�

Given a set of positive numbers � � ak�� � ak�� � � � � � am � ��
consider the partition of R� into intervals ��� ak���� �ak��� ak���� � � � � �am����
By Theorem � the random vector P ��� ak���� P �ak��� ak���� � � � P �am��� has a
Dirichlet distribution with parameter vector ��k��� � � � � �m��� where �k�� �
���� ak���� � � � � �m�� � ��am���� The measure � is given as before by � �
��

P
uncensored �Zi �

Lemma �� �Susarla and Van Ryzin� With the notation above� we have

E�

mY
i
k��

P �ai��� �
m�k��Y
i
�

�
i�

Pi
j
� �m���j

i� ��R��

�
�

m�k��Y
i
�

�
i� ��am�i���

i� ��R��

�
�
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Proof� This is essentially Lemma  �a� of SV ��	��� with some extra simpli��
cations�

When ��R�� � � the expression on the right hand side of Lemma � is
still well de�ned unless there are no uncensored observations in the sample� In
Example  of Section �� there are no uncensored observation in the sample and
we do not discuss the limit of the Bayes estimator as ��R��� � there�

Remark� It is clear from the de�nition of � that when ��R��� �� � is integer
valued� This implies that the expectation in Lemma � has a rational number
value ��nite product of rational numbers� as ��R��� ��

���� Many interval�left censored observations

When the data contain many interval and many right censored observations�
the Bayes estimator of � � F �u� � P �X � u� given all the data �censored or
uncensored� is

�SD�u� �
E�fP �u���

Q
i�c P �Lw� Zw�

Q
r�c P �Zi���g

E�f
Q
i�c P �Lw� Zw�

Q
r�c P �Zi���g � ����

When data contains many left and many right censored observations� the
Bayes estimator of �� F �u� is

�SD�u� �
E�fP �u���

Q
l�c��� P �Zw����

Q
r�c P �Zi���g

E�f
Q
l�c��� P �Zw����

Q
r�c P �Zi���g � ���

Because left censored observation is a special case of interval censored ob�
servation as pointed out in the previous section� we only present in detail below
the Bayes estimator with many interval�right censored observations�

Let us recall the identity

mY
i
�

�bi � ai� �
X

y� � � � ym � ����

where yi is either bi or �ai and the summation is over all possible m choices� The
integer m is de�ned as m � �fi�cg � number of interval censored observations�

By using ����� we can write
Q
i�c P �Lw� Zw� �

Q
i�cfP �Lw����P �Zw���g

�
P
P� � � �Pm� where each Pw is either P �Lw��� or �P �Zw���� and the sum�

mation is over all m di�erent choices�
To make the expression more speci�c we introduce some notation� De�ne

vectors � � ���� � � � � �m� where each �i � either � or �� Given m interval censored
observations� �Li� Zi�� we de�ne 

m sets of numbers fci���� i � �� � � � �mg where
ci��� � Li if �i � � otherwise ci��� � Zi� With each set fci���� i � �� � � � mg�
associate a sign� if the set contains an even number of Zi�s then the sign is
positive� if the set contains odd number of Zi�s the sign is negative�
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With these de�nition we can write
Q
i�c P �Lw� Zw� �

P
P� � � �Pm �

P
� �Qm

i
� P �ci������� where the summation is over all m di�erent ��s� and � is the

associated sign�

Finally� we de�ne new sets of numbers by adding r �r � �fr � cg� right
censored observations Z�� � � � � Zr to fci���� i � �� � � � �mg� fbj���� j � �� � � � �m�

rg � fci���� i � �� � � � �mgSfZ�� � � � � Zrg� For any sets of real numbers b�� � � � � bk�

we denote by b����� � � � � b��k� the reversely ordered numbers �descending�� So�

b���i����� i � �� � � � �m � r is a set of m � r numbers ordered from largest to

smallest�

With these sets of numbers de�ned� the denominator of ���� can be written

as

X
E�

�
P� � � � Pm 	

Y
r�c

P �Zi���
	
�
X
�

�
�

m�rY
i
�

i� � � ��b���i�������

i� � � ��R��

	
�

where the summation is over m di�erent ��s� We can similarly compute the

numerator of ���� except there is one more term� P �u���� included with the right

censored observations� De�ne fb�j ���g � fci���� i � �� � � � �mgSfZ�� � � � � Zr� ug�
Theorem �� The nonparametric Bayes estimator of the survival function S�u� �

��F �u� with right censored and interval censored data under a Dirichlet process

prior is

�SD�u� �

P
E�



P� � � � Pm 	

Q
r�c P �Zi���	 P �u���

�
P
E�



P� � � � Pm 	

Q
r�c P �Zi���

� �

�

X
�

����
P

�s

m�r��Y
i
�

i� � � ��b���i�������

i� � � ��R��

X
�

����
P

�s
m�rY
i
�

i� � � ��b��i�������

i� � � ��R��

� ����

The sums in ���� are over all m possible ��s�

Admittedly the two summations above involves m terms when there are m

interval censored observations� Also� in the summations� there are both positive

and negative terms that will cancel to a large extend� Rounding errors will be

magni�ed if we use ���� directly� Our purpose here is to show that an explicit

formula exists for the Bayes estimator� Simpli�cations�alternative formulae are

desirable and will be pursued in the future�

Remark� From Lemma � and Theorem � we can infer that the limit of the

Bayes estimator ���� when the � measure approaches zero is a step function�

at least for u � maximum observed value� This is because all the E� involved
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will be step functions according to Lemma �� We can also infer that when the
� measure approaches zero� the Bayes estimator ���� is a rational� since the E�

involved are all rational�

�� Examples

The examples presented here are hand�calculated or are obtained by using
software we developed �Example  and the NPMLE in Example ��� We pay
close attention to the limit of the Bayes estimator when � � � in the Dirich�
let prior �non�informative prior�� and compare the estimator with the NPMLE�
The software used here are packaged as R �http���www�r�project�org�� packages
and can be found at http���www�ms�uky�edy� mai�research�� The software for
computing NPMLE is also available at this site�

To minimize additional notation� we recycle the notation used by SV as much
as possible� Assume Z�k���� � � � � Z�m� are the ordered� distinct censored �both
right and left�interval� times among the sample ������ Assume there are no ties
among the left�interval and right censored observations �but ties within right
censored observations are allowed�� At each censored observation Z�i�� k � � �
i � m� let 	i be the number of right censored observations that equal Z�i�� Thus
if there are two right censored observations equal to Z�i�� then 	i � � If Z�j�
is a left censored observation then 	j � �� To make the notation consistent� we
de�ne Z�k� � � and Z�m��� ���

Let N�u� be the number of uncensored and right censored observations that
are larger then or equal to u� i�e�� N�u� �

P
j� �j
� I�Zj�u �

Pm
i
k�� 	iI�Z�i��u �

and let N��u� � N�u���
We reproduce SV�s Bayes estimator �based only on the uncensored and right

censored observations of the sample ������ in a slightly modi�ed form� For Z�l� �
u � Z�l��� with k � l � m� ��

�S�u� �
��u��� �N��u�

��R�� �N����
	

lY
j
k��

�
��Z�j���� �N�Z�j��

��Z�j���� �N�Z�j��� 	j


� �����

We have changed two things� we added the nodes Z�j� for left�interval censored
observations� though with zero 	j �s� n is replaced by N�����

Example �� Here is an example with one left censored observation and four
right censored observations� These are the data used by SV ��	��� but with an
added left censored observation at Z � ��

The ordered observations with their censoring indicators are listed below in
Table ��

Table �� Data with one left and four right censored observations�

Z
�

i
s � ��� ��� ��� ��� � 	�� ��� 
�� ����

� � � � � � � � � � �
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Let the Bayes estimator of SV based only on uncensored and right censored
observations be �S�u�� i�e�� as de�ned in ������ Our estimator that takes into
account one left censored observation can be written as follows� For u � Zleft �
�� after tedious but straightforward simpli�cation we get

�SD�u� � �S�u�	
��������

��R����
�

��������

��������
	 ��������

��R����
�

����������

����������
	 ��������

��R����
	 ����������

��������

��������

��R����
�

��������

��������
	 ��������

��R����
�

����������

����������
	 ��������

��R����
	 ����������

��������

�

For u in other time intervals� the estimator can be similarly expressed as the
product of �S�u� and some other term� the details are omitted� The plot of the
Bayes estimator is given in Figure ��

� � �� ��

�
��

�
��

�
��

�
��

�
��

�
��

�����	��

te
m
p

Example �
B 
 �� � 
 ����

and B 
 ������ � 
 ����

Figure �� Plot for Example ��

Next we compute the limit of the Bayes estimator� When � � �� the SV
estimator� �S�u�� has as a limit the Kaplan�Meier estimator SKM � For 	� � u �
���� the limit of our estimator is SKM 	 ����
�� � ���
� 	 ����� 	 ����� 	
����	 ����
�� � ���
��	� For u in other intervals the limit can be computed
similarly�

We plot the estimator with ��u��� � B exp��
u�� The plot shows estima�
tors for B � 
� 
 � ��� and B � ������ 
 � ���� The latter is indistinguishable
in appearance with the limit just calculated�

Computation of the NPMLE for doubly censored data can be done by EM
type iteration �see Turnbull ��	��� and Chen and Zhou ������� For the data in
Table � we obtain the values in Table �

Table �� NPMLE and limit of Bayes estimator for data in Table ��

t ����� ������� ����	�� 	���
�� 
�������

NPMLE � ����	���� ��������� ���	���	� ��������


Limit Bayes � �����	
�� �����
��� ���	����� ������	�
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The di�erences between the NPMLE and the limit of the nonparametric

Bayes estimator are small but real� The likelihood of the distribution in Table

 is larger than those of the limit of the Bayes estimator� ������� 	 ���� vs�

�����	� 	 �����

Example �� We took the �rst ten observations from the breast cosmesis data

with radiation of Finkelstein and Wolfe� as reported by Fay ��			�� Out of the

ten� there are four right censored observations� four interval censored observations

and two left censored observations �i�e�� interval censored with left�ends as ���

Data� ������� ��� ���� ��� ��� ������� ������� ��� ���� ������� ��� ���� ���� ���� ��� 
��

We computed the nonparametric Bayes estimator with ��u����B exp��
u��
The resulting estimator with B � 
 and 
 � ��� is computed using the software

we developed and is plotted in Figure �

� �� �� �� �� ��

�
��

�
��

�
��

�
��

�
��

�
��

�����	�

te
m
p
�
��
�
�
�

First �� obs� of breast cosmesis data
B 
 �� � 
 ���

Figure �� Plot for Example ��

In the following two examples� the Bayes estimators are obtained with for�

mula ���� and then we let ��R�� � � to obtain the limit� The NPMLE�s are

also calculated� not by software but analytically�

Example �� Here we took a small example with one left and one right censored

observation� The NPMLE and the limit of the non�parametric Bayes estimator

turn out to be exactly the same�

Table �� Data with one left and one right censored observation�

Z �is � Z��� Z��� Z�	� Z��� Z���

� � � �  � �

Jump of �� �F �u� ��� � � ��� ���
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Example �� The order of two censoring indicators in the above table are

switched and the NPMLE is di�erent from the limit of Bayes estimator� The limit

of Bayes estimator is not self�consistent either� To calculate the NPMLE� we �rst

note for this data the NPMLE F ��� has only three jumps at Z���� Z�	� and Z����

Denote the jumps size by p�� p�� p	� By symmetry we must have p� � p	� Using

the constraint
P
pi � �� we can reduce the likelihood� L � p��p� � p	�p��p� �

p��p	� to a function of p� only� Straightforward calculation shows that p� �
p
���

maximizes the likelihood� Therefore p� � p	 � �� �p������ which is the entry

�����	� in the table�

Z
�

i
s � Z��� Z��� Z��� Z��� Z���

� � � � � � �

Jump of limit Bayes ������� � ������� � �������

Jump of NPMLE ������
�� � ��������� � ������
��

Remark� Example � shows that with positive probability� the NPMLE �� �F ���
for doubly�interval censored data can take irrational values� A closer look at the

example provides some insight as why the estimators are di�erent� as described
in the next section�

Remark� Example � and � reveal two di�erent situations� The di�erence is that

left and right censored data overlap �right censored observation is smaller then

the left censored observation� in Example �� The overlap in Example � is not

real� since there is no probability mass inside the overlap�

�� Limit of Bayes and NPMLE

In this section we formally summarize some results concerning the limit of

the Bayes estimator and the NPMLE in the doubly�interval censored data case�

The argument below is valid for any prior� not just the Dirichlet process prior�

Theorem �� Suppose a sequence of priors �v� v � �� � � � �� is such that the �non�

parametric� Bayes estimators �� �Fv��� under squared error loss� converge to the

Kaplan�Meier estimator whenever the data has only right censoring� Then this

same sequence of Bayes estimators cannot converge� in general� to the NPMLE

for interval�doubly censored data�

Proof� The Bayes estimator under squared error loss can be written as

�� �Fv�u� �
E�P �u���LF �data�

E�LF �data�
�

where LF �data� is the likelihood of the data when its distribution is F � The

assumption of the Theorem for right censored data says that� as v � �� we



�� MAI ZHOU

always have

E�fP �u���
Y
r�c

P �xi���
Y

uncensor

P �fxjg�g

E�

Y
r�c

P �xi���
Y

uncensor

P �fxjg�g
� �� FK�M �u� � �����

Notice the Kaplan�Meier estimator� FK�M �u�� is always rational valued�

Now we look at a particular sample con�guration with just one left censored

observation� for example the data in Example �� The Bayes estimator for these

data can be written as

E�P �u���P �fZ�g�P �Z����P �fZ	g�P ��� Z��P �fZ�g�
E�P �fZ�g�P �Z����P �fZ	g�P ��� Z��P �fZ�g� �

Let us use the notation P �Z� � P �fZg�� and P �Z�� � P �Z���� Write P ��� Z��

� �� P �Z���� � �� P �Z�
� � and expand to get

�
E�P �Z��P �Z	�P �Z��P �Z

�
� �P �u

���E�P �Z��P �Z	�P �Z��P �Z
�
� �P �Z

�
� �P �u

��

E�P �Z��P �Z	�P �Z��P �Z
�
� ��E�P �Z��P �Z	�P �Z��P �Z

�
� �P �Z

�
� �

�

����

If we divide the numerator of ���� by E�P �Z��P �Z	�P �Z��P �Z
�
� �P �u

��

then� as v � �� the numerator will converge to the limit � � �� � F �K�M�Z���

according to ������ Here the Kaplan�Meier estimator is based on three uncensored

observations� Z�� Z	� Z� and two right censored observations� Z� and u�

Similarly� if we divide the denominator of ���� by EP �Z��P �Z	�P �Z��P �Z
�
� �

then it has the limit � � �� � F ��K�M�Z���� where the Kaplan�Meier estimator

is based on three uncensored observations� Z�� Z	� Z� and one right censored

observation Z��

In other words� multiply ���� by

E�P �Z��P �Z	�P �Z��P �Z
�
� �

E�P �Z��P �Z	�P �Z��P �Z
�
� �P �u

��
�����

to produce a rational limit� The factor ����� itself has a rational limit as v ��
� � ��� F ��K�M �u������ This implies that the limit of ����� as v ��� is

F �K�M�Z��

F ��K�M�Z��
	 ��� F ��K�M�u�� �

But that cannot be the NPMLE as Example � shows the NPMLE is irrational�

This also serves as the proof for the interval censored case� since the left

censored observation is just ��� Z���� interval censored�
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Corollary �� There is no sequence of priors� �v such that the resulting sequence

of Bayes estimators under squared error loss� �� Fv���� always converges to the

NPMLE in the interval�doubly censored data case�

Proof� Suppose� to the contrary� there is such a sequence of priors� Since right

censoring is a special case of double�interval censoring �zero left censoring or all

intervals are of the form �ai����� this sequence of estimators must converge to

the Kaplan�Meier estimator with such data� But by Theorem �� such sequence

cannot converge to the NPMLE for doubly�interval censored data case in general�

�� Discussion

The formula ���� has m terms when there are m interval censored obser�

vations� While we do not have a formal proof that the computation of the Bayes

estimator cannot be reduced to polynomial order� it is not hard to see that the

computation is equivalent to

Z
� � �
Z Y

j

�
jX

r
�

xr�
Y
j

���
jX

r
�

xr����
X

xj�
�m
Y

x
�j
j

Y
dxj

on the region xj � � and
P
xj � ��

Remark� The irrational value of NPMLE with doubly censored data also im�

plies that the EM algorithm� if started from the Kaplan�Meier estimator� cannot

converge in a �nite number of steps in general�
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