
Empirical likelihood, II

Empirical (Nonparametric) likelihood:

For X1, · · · , Xn iid ∼ F .

EL(F ) =
n∏
i=1

∆F (Xi)

EL ratio

ELR(F ) =
EL(F )

EL(Fn)

where Fn is the empirical distribution function. When no ties in the data, this is

=
n∏
i=1

npi

where the mass of F on Xi is pi ≥ 0, and
∑
pi = 1.

ELR function for some finite dimensional parameters θ:

ELR(θ) =
sup{EL(F ) | T (F ) = θ}

supEL(F )

where T (F ) is some finite dimensional features of the F , like the mean of F : then

T (F ) =
∫
tdF (t).

EL hypothesis tests:

Reject H0 : T (F ) = θ0 when −2 logELR(θ0) > r0 for some threshold r0, usually

the 95% chi square quantile.

EL confidence regions:

{θ| − 2 logELR(θ) < r0}

EL for means T (F ) =
∫
xdF (x). For discrete F this is T (F ) =

∑
ti∆F (ti) where

ti are the jump points of F . Let ∆F (ti) = pi.

ELR(µ) = sup

(
n∏
i=1

npi |
∫
xdF (x) = µ; pi ≥ 0;

n∑
i=1

pi = 1

)

We now compute an explicite expression of logELR(µ). Maximize

n∑
i=1

log(npi)
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under the constraints:

n

n∑
i=1

pi(Xi − µ) = 0;
n∑
i=1

pi = 1

Write

G =
∑

log(npi)− nλ
n∑
i=1

pi(Xi − µ) + γ[
n∑
i=1

pi − 1]

λ and γ are Lagrange multipliers.

Taking derivatives, and set it to 0:

∂G

∂pi
=

1

pi
− nλ(Xi − µ) + γ = 0

We compute

0 =
∑

pi
∂G

∂pi
= n+ γ

giving γ = −n. Thus

pi =
1

n

1

1 + λ(Xi − µ)

where λ is solved from the following equation.

Plugging this back into the constraint to get λ:

g(λ) =
1

n

n∑
i=1

Xi − µ
1 + λ(Xi − µ)

= 0

This equation has a unique solution. (check)

Theorem 1 (ELT, Owen 1990) If X has finite mean µ0 and finite covariance matrix

of rank q > 0, (q = dim(X)), then

−2 logELR(µ0)→D χ2
q

Proof for Case q = 1.

Note that g(0, µ) = X̄ − µ Let σ̂2 =
∑n

i=1(Xi − µ)2.

We now compute an expression for the solution of g(λ) = 0 when µ = µ0. Taylor

expanding g wrt λ at λ = 0, the equation becomes:

0 = g(λ) = g(0) + λg′(0) + oP (n−1/2) = X̄ − µ0 − λσ̂2 + oP (n−1/2)

Thus

λ = (X̄ − µ0)/σ̂2 + oP (n−1/2) = OP (n−1/2)

Recall

pi =
1

n+ nλ(Xi − µ0)
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so, using the Taylor expansion log(1 + x) = x− x2/2 +O(x3),

−2 logELR(µ0) = −2
n∑
i=1

log(npi) = 2
n∑
i=1

log(1 + λ(Xi − µ0))

= 2nλ(X̄ − µ0)− nλ2σ̂2 + oP (1)

= 2n(X̄ − µ0)2/σ̂2 − n(X̄ − µ0)2/σ̂2 + oP (1)

= n(X̄ − µ0)2/σ̂2 + oP (1)

→D χ2
1

The proof can be modified to work with data that has ties.

EL with estimating equations:

Estimating function: m(x; θ) with E(m(X; θ0)) = 0; e.g., median, m(X; θ) =

I[X≤θ] − 0.5.

The EL function:

R(θ) = sup

{
n∏
i=1

npi |
n∑
i=1

pim(Xi; θ) = 0; pi ≥ 0;
n∑
i=1

pi = 1

}

Theorem 2 (ELT) If m(X, θ0) has a finite covariance matrix of rank q > 0, then

−2 logELR(θ0)→D χ2
q

Proof: Immediate from basic ELT upon replacing X by m(X; θ0).

What if the estimating function has some estimated parameters: The variance

σ2 = E(X − µ)2

Since the mean is also unknown, the estimating function we actually use is∑
pi(Xi − X̄)2 − σ2 =

∑
pimni − σ2

where mni is not independent anymore. (homework: Show that 1√
n

∑
mni have a

asymptotic normal distribution under condition that EX4 <∞.)

3



Additional homework

For any CDF F (t) we can define a cumulative hazard function:

Λ(t) =

∫
(−∞,t]

dF (s)

1− F (s−)

Notice this formular works for continuous and discrete F .

Show that the inverse formular is true:

1− F (t) = exp(−Λ(t))

works for continuous cdf F , and

1− F (t) =
∏
s≤t

1−∆Λ(s)

works for discrete F .
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