A Resampling Method on Pivotal Estimating Functions

Kun Nie Biostat 277,Winter 2004 March 17, 2004

Outline

- Introduction
- A General Resampling Method
- Examples
 - Quantile Regression
 - -Rank Regression
 - -Simulation Study
- Discussions

Introduction

Def 1. M-estimate (P.J., Bickel, K.A., **Docksum):** Suppose *i.i.d.* X_1, \dots, X_n are distributed to P_{θ} . Write $P = \{P_{\theta} : \theta \in \Theta\}$, where Θ is an open set in R. Let $\rho: X \times \Theta \to R$ where

$$D(\theta, \theta_0) = E_{\theta_0}(\rho(X_1, \theta) - \rho(X_1, \theta_0))$$

is uniquely minimized at θ_0 . Let $\hat{\theta_n}$ be the minimum contrast estimate such that

$$\widehat{\theta_n} = argmin \frac{1}{n} \sum_{i=1}^n \rho(X_i, \theta).$$

Suppose $\psi = \frac{\partial \rho}{\partial \theta}$ is well defined, then

$$S_X(\theta) = \frac{1}{n} \sum_{i=1}^n \psi(X_i, \theta) = 0$$
 (1)

when $\theta = \hat{\theta_n}$. $\hat{\theta_n}$ is an M-estimate.

Discussions on M-estimate:

 Solutions to equation (1) are called Mestimate. We even do not require that θ_n is a minimum contrast.

- If ψ is differentiable, then under certain conditions the distribution of $\hat{\theta_n}$ is approximately normal,
 - the asymptotic mean is θ_0
 - the asymptotic variance is

$$(E_P(\frac{\partial \psi}{\partial \theta})(X_1, \theta(P)))^{-1} \times var(\psi(X_1, \theta(P))) \times (E'_P(\frac{\partial \psi}{\partial \theta})(X_1, \theta(P)))^{-1}$$

• However, under a semi-parametric model setting the estimating function ψ is not smooth, and it is difficult to calculate the asymptotic variance of $\hat{\theta_n}$ with the above formula.

Example (Koenker and Bassett, 1978)

Model: $Y_i = \beta' z_i + \varepsilon_i$

where ε_i 's are assumed to be independent but may not be identically distributed. The distribution of ε_i is not specified. The median of ε_i is 0. A commonly used estimating function S for β is:

$$n^{-1/2} \sum_{i=1}^{n} z_i (I(Y_i - \beta' z_i \le 0) - 1/2).$$

S is not continuous.

Q: How to make inference on β ?

A New Resampling Method

Suppose that the distribution (or limit distribution) of random vector $S_X(\beta_0)$ can be generated by a $p \times 1$ random vector U, whose distribution is completely known or can be estimated consistently. Parzen et. al. proposed the following procedure:

For
$$j = 1, \cdots, M$$
,

- Step 1: generate random sample u_j from U
- Step 2: solve the equation $S_X(\beta) = u_j$ and get a solution β_{u_j}

When M is large (e.g., 1000), the empirical distribution of β_U can be obtained.

Theorem 1. Let n be the sample size for X. If there exist a sequence of constants c_n and a nonsingular matraix A such that,

A1:

$$sup(\frac{\|S_X(\beta) - S_X(\beta^*) - An^{1/2}(\beta - \beta^*)\|}{1 + n^{1/2}\|\beta - \beta^*\|}) \to 0$$

almost surely, where β β^* are in $U(\beta_2, c_1)$

almost surely, where β, β^* are in $U(\beta_0, c_n)$. Furthermore, for $\|\beta - \beta_0\| \ge c_n$,

A2:

$$inf||S_X(\beta)|| = \gamma_n \to \infty$$

Then the asymptotic conditional distribution of $n^{1/2}(\tilde{\beta} - \beta_U)$ given X is asymptotically identical to the asymptotic distribution of $n^{1/2}(\hat{\beta} - \beta_0)$, where $\tilde{\beta}$ is a realization of $\hat{\beta}$ after observing X. More specifically, they are asymptotically distributed as $-A^{-1}U$.

Example 1: Heteroscedastic Quantile Regression

Model: $Y_i = \beta' z_i + \varepsilon_i$

where ε_i 's are assumed to be independent but may not be identically distributed. $\beta'_o z_i$ is the 100 τ th percentile of Y_i . The distribution of ε_i is not specified. The estimating function for β is:

$$S_X = n^{-1/2} \sum_{i=1}^n z_i (I(Y_i - \beta' z_i \le 0) - \tau).$$
 (2)

To solve the equation $S_X(\beta) = 0$, we turn to solve the following minimizing problem (Bassett and Koenker, 1982):

$$\rho = -\sum_{i=1}^{n} (Y_i - \beta' z_i) (I(Y_i - \beta' z_i \le 0) - \tau) (3)$$

(Quantile regression model in S-Plus/R/STATA)

Illustration: By setting z = (1, 1, 1, 2, 2, 2, 3, 3, 3, 4), and $y_i = 0.5z_i + \epsilon_i$, where ϵ_i are *i.i.d.* N(0, 1), we got the following plot of $S_X(\beta)$ when $\tau = 0.5$:

Note: y = (1.41, 0.57, 2.52, 0.87, 2.74, 0.80, 1.76, 1.71, 0.81, 1.35) in this example

Note: ρ is continuous, nonnegative and convex.

Resampling Procedure:

for j = 1, ..., M,

- Step 1: generate $\xi_1, \dots, \xi_n \sim Bernoulli(\tau)$,
- Step 2: $u_j = n^{-1/2} \sum_{1}^{n} z_i (\xi_i \tau)$
- Step 3: Solve equation $S_X(\beta) = u_j$ and get the solution β_{u_j} by:

-Let $(Y_{n+1}, z_{n+1}) = (N, n^{1/2}u/\tau)$, where N is a large number s.t. $I(Y_{n+1}-\beta' z_{n+1} \le 0)$ is always 0.

-Solve
$$S_X^* = n^{-1/2} \sum_{i=1}^{n+1} z_i (I(Y_i - \beta' z_i \le 0) - \tau) = 0$$
 equivalently.

Thus we get the empirical distribution of β_{u_j} .

Example 2: Rank Regression

Again, assume that $Y_i = \beta' z_i + \epsilon_i$, but ϵ_i 's are *i.i.d.*, and β does not include the intercept term. The estimating function $S_X(\beta)$ based on ranks is:

$$S_X = \sum_{i=1}^n (z_i - \bar{z}) \phi(R(Y_i - \beta' z_i)), \quad (4)$$

where

 $-\phi$ is an increasing function

-*R* is the rank function for $\{Y_1 - \beta' z_1, \cdots, Y_n - \beta' z_n\}$.

Then $\hat{\beta}$, the solution to $S_X(\beta) = 0$, is a minimizer of the following function:

$$\rho = \sum_{i=1}^{n} \phi(R(Y_i - \beta' z_i))(Y_i - \beta' z_i - \bar{Y} + \beta' \bar{z})(5)$$

An efficient program called RREGRESSION is available to minimize ρ .

Resampling Procedure

for j = 1, ..., M,

• Step 1: generate (η_1, \dots, η_n) from random permutation of $(1, \dots, n)$,

• Step 2:
$$u_j = \sum_{1}^{n} (z_i - \bar{z}) \phi(\eta_i)$$

• Step 3: Solve equation $S_X(\beta) = u_j$ and get the solution β_{u_j} by:

-Let $(Y_{n+1}, z_{n+1}) = (N, \overline{z} - (n+1)u/[n(\phi(n+1) - \overline{\phi}))]$, where N is a large number s.t. $R(Y_{n+1} - \beta' z_{n+1} \text{ is always } n+1.$ -Solve $S_X^* = \sum_{i=1}^{n+1} (z_i - \overline{z})\phi(R(Y_i - \beta' z_i)) =$

0 equivalently.

Illustration

Plot of $S_X(\beta)$

Note: ρ is continuous, nonnegative and convex.

Simulation Study

(Median regression Model) 1000 samples $\{(y_i, z_i), i = 1, \dots, 50\}$ with $\beta_0 = (0, 1, 1)$ were generated. The 1st components of z_i were all 1s and the 2nd components of z_i were Bornoulli with success probability 0.5. The 3rd component of z_i were i.i.d. standard normal. The C.I.'s of the 3rd component of β were obtained by 1000 resamplings of U. Table 1 was based on 1000 simulations.

Table 2.	Empirical	coverage	probabilities	s (ECP)	and esti-
mated m	ean lengths	(EML) for	r various int	erval p	rocedures

Confidence		Resample		Bootstrap		STATA	
level		ECP	EML	ECP	EML	ECP	EML
0.95	S	0.95	0.62	0.95	0.59	0.97	0.58
	Р	0.98	0.62	0.98	0.59		
	в	0.93	0.64	0.94	0.61		
0.90	S	0.92	0.51	0.91	0.49	0.94	0.49
	P	0.95	0.51	0.94	0.49		
	в	0.90	0.53	0.89	0.51		
0.85	S	0.88	0.45	0.86	0.43	0.91	0.43
	P	0.91	0.43	0.89	0.42		
	в	0.87	0.47	0.85	0.45		

(a) Gaussian error with mean 0 and variance 0.5

					5 S. 200		
	Resample		Boot	Bootstrap		STATA	
	ECP	EML	ECP	EML	ECP	EML	
S	0.97	0.62	0.96	0.60	0.97	0.59	
Р	0.98	0.62	0.98	0.60			
в	0.95	0.65	0.93	0.63			
S	0.92	0.52	0.91	0.20	0.95	0.49	
Р	0.95	0.51	0.94	0.49			
в	0.88	0.24	0.87	0.52			
S	0.88	0.46	0.87	0.44	0.92	0.43	
Р	0.91	0.44	0.89	0.42			
в	0.85	0.47	0.82	0.46			
	P B S P B S P	ECP S 0.97 P 0.98 B 0.95 S 0.92 P 0.95 B 0.88 S 0.88 P 0.91	ECP EML S 0.97 0.62 P 0.98 0.62 B 0.95 0.65 S 0.92 0.52 P 0.95 0.51 B 0.88 0.54 S 0.88 0.46 P 0.91 0.44	ECP EML ECP S 0.97 0.62 0.96 P 0.98 0.62 0.98 B 0.95 0.65 0.93 S 0.92 0.52 0.91 P 0.95 0.51 0.94 B 0.88 0.54 0.87 S 0.88 0.46 0.87 P 0.91 0.44 0.89	ResampleBootstrapECPEMLECPEMLS0.970.620.960.60P0.980.620.980.60B0.950.650.930.63S0.920.520.910.50P0.950.510.940.49B0.880.540.870.52S0.880.460.870.44P0.910.440.890.42	ECP EML ECP EML ECP S 0.97 0.62 0.96 0.60 0.97 P 0.98 0.62 0.98 0.60 0.97 B 0.95 0.65 0.93 0.63 0.95 S 0.92 0.52 0.91 0.50 0.95 P 0.95 0.51 0.94 0.49 0.95 B 0.88 0.54 0.87 0.52 0.92 S 0.88 0.46 0.87 0.44 0.92 P 0.91 0.44 0.89 0.42 0.92	

(b) Lognormal error with mean $e^{0.25}$ and variance $(e - e^{0.5})$

Note: based on 1000 simulations

Confidence		Resample		Bootstrap		STATA	
level		ECP	EML	ECP	EML	ECP	EML
0.95	S	0.95	0.66	0.95	0.65	0.60	0.29
	Р	0.97	0.65	0.95	0.64		
	В	0.94	0.66	0.93	0.64		
0.90	S	0.91	0.55	0.90	0.54	0.53	0.24
	Р	0.92	0.53	0.91	0.53		
	в	0.90	0.55	0.88	0.53		
0.85	S	0.87	0.48	0.86	0.47	0.47	0.21
	Р	0.87	0.47	0.87	0.46		
	в	0.85	0.48	0.83	0.47		

(c) Gaussian error with mean 0 and heteroscedastic variance

s, standard method; P, percentile method; B, bias correction method.

Note: based on 1000 simulations

Discussions

- The proposal is useful when the point estimate (β) can be easily obtained but its variance is difficult to estimate by conventional method
- There is no analytical proof that the traditional bootstrap method is valid for general quantile regression model.
- When the error terms are heteroscedastic, conventional quantile regression method in STATA could be bad, while the method proposed in this paper performs well.
- The method proposed in this paper has potentials to real data analysis.

Reference

M.I. Parzen, L.J.Wei,Z. Ying, 1994, A Resampling Method Based on Pivotal Estimating Functions, Biometrika, Vol 81, 341-350

P.J.Bickel, K.A. Doksum, 2001, *Mathematical Statistics*, Prentice Hall

B. Efron, R.J. Tibshirani, 1993, *An Introduction to the Bootstrap*, Chapman & Hall

Keonker, R Bassett, G, 1978, *Regression Quantiles*, Economitrica 84, 33-50

Keonker, R Bassett, G, 1982, An Empirical Quantile Function for linear Models with i.i.d. Errors , JASA 77, 407-15