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Introduction

Def 1. M-estimate (P.J., Bickel, K.A.,
Docksum): Suppose i.i.d. X1, -, X, are
distributed to Fy. Write P = {Py : 0 €
©}, where © is an open set in R. Let
p. X X © — R where

D(0,00) = Egy(p(X1,0) — p(X1,00))
is uniquely minimized at 6g. Let 6, be the
Mminimum contrast estimate such that

- 1 2
n = argmin— Y p(X;,0).
ni=1

Suppose Y = % is well defined, then

1 2
SX(9)=5 > (X;,0) =0 (1)
i=1
when 6 = 0,,. 6,, is an M-estimate.

Discussions on M-estimate:

e Solutions to equation (1) are called M-
estimate. We even do not require that
6, is @ minimum contrast.



e If ¢ is differentiable, then under certain
conditions the distribution of 6,, is ap-
proximately normal,

- the asymptotic mean is g

- the asymptotic variance is
(Ep( )(Xl,H(P))) L x var(w(Xl,H(P)))

><(Ep( )(X1,9(P))) '

e However, under a semi-parametric model
setting the estimating function v is not
smooth, and it is difficult to calculate
the asymptotic variance of 6,, with the
above formula.



Example (Koenker and Bassett, 1978)
Model: Y; = Bz + ¢;

where ¢;'s are assumed to be independent
but may not be identically distributed. The
distribution of ¢; is not specified. The me-
dian of ¢; is 0. A commonly used estimating
function S for 3 is:

mn
_ /
n~ M2 N (1Y, — 82 < 0) —1/2).
i=1
S is not continuous.

Q: How to make inference on (37



A New Resampling Method

Suppose that the distribution (or limit dis-
tribution) of random vector Sx(Bg) can be
generated by a px1 random vector U, whose
distribution is completely known or can be
estimated consistently. Parzen et. al. pro-
posed the following procedure:

For j=1,---, M,

e Step 1: generate random sample U
from U

e Step 2: solve the equation Sx(8) = u;
and get a solution 6uj

When M is large (e.g., 1000), the empirical
distribution of @y can be obtained.



Theorem 1. Let n be the sample size for
X. If there exist a sequence of constants
cn, and a nonsingular matraix A such that,

Al:

I1Sx(8) — Sx(8*) — Ant/2(8 — 8|
14 nl/2|g — g

almost surely, where 3,3* are in U(B8g,cn).

Furthermore, for ||8 — Bo|| > cn,

sup( ) —0

A2:

n flISx (B =y — o0

Then the asymptotic conditional distribu-
tion of nl/2(3 — By) given X is asymptot-
ically identical to the asymptotic distribu-
tion of nl/2(8 — By), where 3 is a realiza-
tion of B after observing X. More specifi-
cally, they are asymptotically distributed as
~A"1U.



Example 1: Heteroscedastic Quantile
Regression

Model: Y; = Bz + ¢;

where ¢;'s are assumed to be independent
but may not be identically distributed. 5/027;
is the 1007th percentile of Y;. The distribu-
tion of ¢; is not specified. The estimating
function for g3 is:

Sy =n Y23 L(I(Y; — Bz < 0) — 7). (2)
1=1

To solve the equation Sx(8) = 0, we turn
to solve the following minimizing problem
(Bassett and Koenker, 1982):

p=—> (¥i—Bz)I(Y; - B2 <0)-7)(3)

=1

( Quantile regression model in S-Plus/R/STATA)



Illustration: By settingz=1(1,1,1,2,2,2,3,3,3,4),
and y; = 0.5z;,+¢;, where¢; arei.i.d. N(O, 1),

we got the following plot of Sy (B) when

T = 0.5:
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Note: y = (1.41,0.57,2.52,0.87,2.74,0.80, 1.76,
1.71,0.81,1.35) in this example



Plot of p(3)
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Note: pis continuous, nonnegative and con-
Vex.



Resampling Procedure:

forg=1,..., M,
e Step 1: generate &q,---,&n ~ Bernoulli(1),
o Step 2iu; = n—1/2 >1 zi(§& — 7)

e Step 3: Solve equation Sx(8) = u; and
get the solution Buj by:

-Let (Ypa1,2pae1) = (N,n/2u/7), where
N is a large number s.t. I(Yn+1—ﬂlzn+1 <
0) is always O.

-Solve S5 = n—1/2 Z?ill 2 (I(Y; — Bz <
0) — 7) = 0 equivalently.

Thus we get the empirical distribution of

Bu;-



Example 2: Rank Regression

Again, assume that Y; = B,zz- + €;, but g;'s
are 1.1.d., and g does not include the inter-
cept term. The estimating function Sx(6)
based on ranks is:

Sx =Y (2= DRV = B2)),  (4)

1=1
where

-¢ IS an increasing function

-R is the rank function for {Yl—ﬁ/zl, N
/

Then 3, the solution to Sx(8) = 0, is a
minimizer of the following function:

p= 3 6(R(Y; = B2))(Yi — B — ¥ + §2)(5)

=1

An efficient program called RREGRESSION
IS available to minimize p.



Resampling Procedure

for y=1,..., M,

e Step 1: generate (n1,---,mn) from ran-
dom permutation of (1,---,n),

o Step 2iu; = > 1(zi — 2)o(n;)

e Step 3: Solve equation Sx(8) = u; and
get the solution Buj b

-Let (Yn—|—17 Zn—l—l) = (N, z—(n+1)u/[n(d(n+
1)—¢))], where N is a large number s.t.
R(Y,41 — B/zn_|_1 is always n + 1.

-Solve §% = LI (zi—2)¢(R(Y;—B 2;)) =
O equivalently.



Illustration

Plot of Sx(8)




Plot of p(3)
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Note: pis continuous, nonnegative and con-
Vex.
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Simulation Study

(Median regression Model) 1000 samples
{(y’wz’b)??’ — 17750} with 60 — (0717]-)
were generated. The 1st components of z;
were all 1s and the 2nd components of z;
were Bornoulli with success probability 0.5.
The 3rd component of z; were i.i.d. stan-
dard normal. The C.I.'s of the 3rd com-
ponent of B were obtained by 1000 resam-
plings of U. Table 1 was based on 1000
simulations.

Table 2. Empirical coverage probabilities (ECP) and esti-
mated mean lengths (EML) for various interval procedures

(@) Gaussian error with mean 0 and variance (-5

Confidence Resample Bootstrap STATA
level ECP EML ECP EML ECP EML
0-95 095 062 095 059 097 058

098 062 098 (59
093 064 094 061

0-90 092 051 091 049 094 049
95 051 094 049
090 033 0-89 051

0-85 0-88 045 086 043 091 043

091 043 089 042
087 047 085 045

Ry EpR i gy -



(b) Lognormal error with mean e

Confidence Resample
level ECPF  EML
0-95 s 097 062

p 098 062
B 095 065
0-90 s 092 052
P 095 051
B 088 054
0-85 s 088 046
p 091 04
B 085 047

Note: based on 1000 simulations

0-2

Bootstrap
ECP EML
096  0-60
098 060
093 063
091 050
094 049
087  0-52
087 044
089 042
082 046

* and variance (e — ")

STATA
ECP  EML
097 059
095 049
092 043



(c) Gaussian error with mean O and heteroscedastic variance

Confidence Resample
level ECP EML
095 S 095 066

P 097 065
B 094 066
0-90 S 091 0-55
P 092 053
B 090 0-55
0-85 ] 087 (048
P 087 047
B 085 048

Bootstrap
ECP  EML
095 065
095 064
093 064
90 054
91 053
88 053
86 047
87 046
83 047

STATA
ECP  EML
-60 029
033 024
0-47 021

s, standard method; P, percentile method; B, bias correction method.

Note: based on 1000 simulations



Discussions

e [ he proposal is useful when the point
estimate (ﬁ) can be easily obtained but
its variance is difficult to estimate by
conventional method

e [ here is no analytical proof that the
traditional bootstrap method is valid for
general quantile regression model.

e When the error terms are heteroscedas-
tic, conventional quantile regression method
in STATA could be bad, while the method
proposed in this paper performs well.

e [ he method proposed in this paper has
potentials to real data analysis.
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