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1 Swurvival Data and Nelson-Aalen Estimator

1. Survival time T’
2. Censoring time C
3. Observational time X = min(7,C)
4. Censoring indicator D = I(T < ()
1
5. Hazard function: a(t) = limo A Pr(t <T<t+AHT >1t)
6. Cumulative hazard function : A(t fo
7. Nelson-Aalen estimator A Z —
0<Tr<t

8. n; = number of subject at risk at time T;
9. at-risk process Y;(t) = [(X; > t), Y(t)=>] Y(t)
10. counting process N;(t) = I(X; <t,D; = 1) N(t) = > Ni(t)

n

i t
J(u Ju

11. Nelson-Aal timator A(t) = E
elson-Aalen estimator A(t) /0 (u 2 ), (@)

12. J(s) =1(Y(s) > 0)

2 Kernel Function Estimator

The kernel function estimator is given by,

I R
at) = b /TK(tb;gA()
= Y K )

1. K: Kernel function, fjl K(s)ds =1
e.g. K(z)=0.75(1 —2?), |z| < 1.
2. b: bandwidth
3. ateacht {j,t —b<T; <t+ b} contribute to the sum.
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4 Ba(t) = b /7 K(t;S)Pr(Y(s) > 0)dA(s)

Consider
or(t) = b / K(=2)dAc(s)
_ bl/(K(t;S)J( JdA(s) (almost = Ea(t))
alt) = bl/iK(t;S)dA(s)

we can see that &(t) — a*(t) is a martingale:
alt) — at(t) = bt / K(
T
= bt / K(
T

and its expected predictable variation process:

t—s

%A - %))
t—s . J(s)dM(s)
TG

T(t) = “(1))? "
= /K2 VE( Y %))a(s)ds
_ / K2(u Yt:b?)) (t — bu)du

therefore an estimator of variance of &(t):

)= b / rrt=3) ) AN ()

3 Mean Intergrated Squared Error and Optimal Band-
with

To obtain the optimal ’global’ bandwidth, we choose the one minimizing the
mean intergrated squared error(MISE), which is defined as,

MISE(4(t)) = Ef a(t))2dt
= Eftl a(t)) + (&(t) - a( ))]th
= J’E ) 64 £)2dt + [2(a(t) — a(t))?dt
+2f a(t) — a(t))(a(t) — ( ))dt

= ( variance term) + (squared bias term) + Ry (t)
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Let

Ry — LWEMU—&@ﬂ&ﬂ—a@ﬂﬁ:212&ﬁﬂﬂﬂ—a@ﬂt

with
Ry(t) = (Ba(t) —a(t)) = b~ [ K(5*)Pr(Y(s) = 0)dA(s)
:[} K (w)Pr(Y (t — byu) = 0)a(t — byu)du
[Bi(t)] < Crsupiepy, —cpp4q Pr(Y(t) = 0)
[Ra(t)] < Cosupyeps, e, 4 Pr(Y (£) = 0)
Assume
L[ K@du=1, [ uK(u)du=0, " uK(u)du=ky >0
2. there exist a sequence {a,}, a, — 00 as n — oo (in most case, a, = \/n)
a’J(t) ,
3. there exists a continuous function y such that F(—==—*) — —— uniformly
Y) © oy
on [t; — ¢, ty + ¢], as n — oo
4' SupﬁE[ﬁl—C,tQ—f—C] Pr<Y<t) - O) - O(a7;2)
Since
a(t) —alt) = [, K(u)(alt - byu) — a(t))du
= —b,d/(t) fllu w)du + 302" (t) 1w K (w)du + o(b2)

= 1020 (t)ky + ofb2)

the squared bias term = jZQ(&(t) — a(t))*dt = 1bak3 ttf(oz”(t))th + o(b})

For the variance term:

E(a(t) —a(t))* =E(a(t) — a’(t))* + E(e’(t) — a(t))?
+2E(a(t) — ar(t))(a"(t) — a(t))

the first term on the right-hand side (see 7%(¢)) can be expressed by,

2 —1@ ! 20 du + ol (a2b.) !
(@20) 1S [ K u)du+of(a2b) )

and the second term on the right-hand side:

la*(t (t)| = / K(u)I(Y (t —byu) = 0)a(t — byu)du = o(a,?)



by Cauchy -Schwarz inequality, the last term on the right-hand side is of the
form 0((@%&1/2)*1). so the ’'variance term’ can be written as,

/ 2E(o?(t) — a(t)%dt = (a2b,) "} /_ 1K2(t)dt /t Q@dwo((aibn)‘l)

t1 y(t)
All together,

MISE(&) = %bik% /ttQ(af/(t))2dt+an2bn1 /_11 K2(t)dt /ﬁt2 %dﬂro(bi)wto((aibn)l)

to minimize the sum of the first two terms, the optimal bandwidth is

y(t) th
to a(

Two quantities are remained to estimated: o”(¢) and [, Wf))dt

t—s

JaA(s)

a(t) = b3 /T K

and, an estimator of fttf %dt is
2 4 A
a? / ﬂdt.
tq Y(t)

Because the bias is
E(a(t)) — alt) ~

the bias-corrected estimate is a(t) + 3b2&" (¢)ks

3.1 Cross Validation Method
We can expressed the MISE,

MISE(b) = F /t ® (6(0)2dt — 9 /t ? D) + /t ® (a2t

it’s a function of b; the first term is easy to caluclate, the third term deos
not depend on b, and a consistent estimator of the second term is the ’cross
-validation’ estimator:
1 T, —T:; AN(T;) AN(T;
_QZ —K( J) ( ) ( J)
by YT YT

i#]
and plotting MISE(b) against b will find the optimal b
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3.2 Boundary Correction and Local Bandwidth
Now we allow both bandwidth b = b(¢) and kernel K = K; depend on t:

t‘ y (1))

a(t, b(t)

Assuming the support of the survival time distribution is on [0, R].
e interior points I =t :b(t) <t < R — b(t)
e left boundary region By =1 : 0 <t < b(t)
e right boundary region B =t: R—b(t) <t < R

the kernels K; are polynomials

K. (1,z) tel,
Ki(z) = { K. (t/b(t), 2) t € By,
K_((R—=1)/0(t),z) t € Bg,

where K. : [0,1] x [-1,1] — R are bounded kernel function with

/Kiq, /Kiq, Jzdz = 0, /Kiq, )22z # 0,

K_(q,2) = Ki(q, —2)
and some differentiability conditions. e.g,
12
(1+q)*

and K (1,z) = 3(1 — z?) is the Epanechnikov kernel
For local bandwidth, we consider to minimize local mean square error to

obtain bandwidth b(t)
MSE(t, b(t)) = 6(t, b(t)) + 5(t, b(t))

Ky(q,2) = (2 + D[z(1 —2q) + (3¢* — 2¢ + 1) /2]

v and (8 are variance and bias estimatrs,

0000 = s [ K SS =20,

(t.b(e) = [ alt by Kiudu ~ a(t)
The following is the recommended algorithm to obtain the a(t) with b(t).
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1 choose K (g, z) and initial bandwidth by to obtain &(t)
la alternatively, choose a parametric model and obtain MLE &(t)

2 choose equidistant grid of my points t;,¢ = 1---my, between 0 and R.
choose a grid ofA bandwidth b;, 5 =1,--- ll , between some b; and bg_. com-
pute 0(t;) and ((¢;) with all bandwidth b;’s and obtain minimizer b(¢;) of
MSE(t;).

3 obtain final bandwidth using boundary -modified smoother with band-
width bo or %bo

t—t
)

. t—t; -
b(t) =) K b )b(t)/ D> Kl b
4 obtain final estimate &(t) with b(t) = b(t)

4 Large Sample Properties

Now we discuss the large sample properties of the kernel function estimator
with 'global’” bandwidth.

Theoremn IV.2.1 pointwise consistency
Assume

1. t be an interior point of 7

2. « 1s continuous at ¢

3. bandwith b,, — 0 as n — o0

4. there exist an € > 0 such that infyey_c41.q0,Y (5) —), 00 as n — oo

Then & —) o as n — o0

Proof.

we have to show

ja(t) = a(t)] —» 0
() = a(t)] =, 0
a(t) — a(t)] =, 0



Pr(ja(t) — o*(t)]| > 77) by Lenglart s inequality
J(u)dM (u)

—u

< Pr su K >

N (t by <sI<)t+b bn ) Y (u) ")
4] 5 — bpu)a(t — byu)du
—2+Pr / K*(u) Yt — D) ) > 0)

since o and K are bounded, and b,Y (t) —, oo in a neighborhood of ¢, the last
term on the right-hand side can be arbitrary small. so |&(t) — a*(¢)] —, 0

o (t) — a(t)] < /_1 K (w)|[{1 = J(t — byw) ya(t — byu)du —, 0

a(t) — a(t)] < /1 [K(u)||aft = byu) — a(t)|du —, 0

Theoremn IV.2.2 uniform conisitency
Assume

1. t be an interior point of 7

[\

. 0 <ty <ty <t be fixed numbers
« is continuous on [0, ]

. the kernel K is of bounded variation

or o~ W

. bandwith b,, — 0 as n — oo

5 tJ(S)Og(S)dS_}
O s ot

o

7. Jo(1— J(s))a(s)ds —, 0

Then as n — oo,

sup [a(s) — a(s)| —, 0
Se[tl,tQ]

Proof.
ja(t) —a*(t)] = b~ d(A = A)(s)|
< 27'V(K )SuptGOt \A( ) (S)\

where V(K) is the toal variation of K ().
similar to the proof of the consistency of Nelson-Aalen estimator, with assump-
tion (6) the last term converges to zero.
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SUDyepy, 1) |07 (1) — @(t)] —, 0 with assumption (7)
SUDyepy, 1] |0(t) — a(t)| — 0 follows by the boundedness of K and continuity of
o. []

Remark Sufficient conditions for consistency

e uniform consistency of Nelson Aalen estimator : inf,cjy4 Y (s) —, 00

e pointwise consistency of kernel function estimator : infycfg4 bY (s) — 00
e uniform consistency of kernel function estimator : infgep 4 b*Y (s) — 00

Theorem 1IV.2.4 Asymptotic normality
Assume

1. t be an interior point of 7

2. « 1s continuous at ¢

3. there exits positive constants {a,}, increasing to co as n — 0o,
4. b, — 0, a%b, — 00 as n — 00

5. there exists a function y, positive and continuous at ¢ such that

sup |a, "Y' (s) = y(s)] —, 0

SE[t—e,t+¢]
as n — oo, for an ¢
Then
1/2, ~ 9 2 (1) ' 2
L. anby " (a(t) — a(t)) —qg N(0,72(t)), 7°(t) = w K*(u)du
~1

2. aZb,7%(t) —, T
3. for t; # to, &(t1) and &(t2) are asymptotic independent.
Proof. A.
(@) —a"(0) = [ HEaM(),

. _ t—s.J(s)
h H(s) = a,b,"*K .

with H(s) = aub, ( h )Y(s)

Using Rebolledo’s martingale CLT,

infy H2(s)Y (s)a(s)ds = [, a2b, K2()2ate

1 J(t—bpu)a(t—byu)du
=y k) S o=

1
— ng [ K?(u)du, asn — oo
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With any € > 0,

— 5. J(s)a?

b )Y(s)nl > canby”)

1(H(s)| > ) = I(|K ("

converges to zero uniformly because a,b’. /2 — oo, therefore
iITlf H*(s)Y (s)a(s)I(|H(s)| > €)ds — 0
Also
anb?(a*(t) — a(t)) — 0
B. since

anb?(a(t;) / Hi(s)dM (s

S)J(s)
b, "Y(s)

J7 Hi(s)Ha(s)Y (s)a(s)ds

1 S 9—s\ J(s)a(s)ds
— [ a2b K ( t )K(tbn) (%(i))

with H;(s) = a,b, 1/2K(

therefore,

— 0

Theorem IV.2.5 Assume all conditions in Theorem IV.2.4, and
1. a is twice continuously differentiable in a neighbourhood of ¢
2. f_ll K(u)du =1, f_ll uK (u)du =0, f_ll w? K (u)du = kg > 0
3. limsup,,_, az/ °b,, < 00

Then
anb}/Q(&(t) —aft) — 2*1bfloz”(t)k2) —qa N (0, 72(15))

Proof. With Taylor expansion (t* is between t — b,u and t)
anbi*(@(t) — a(t) — 271020/ (£ ks)
— a, bl [ I K (u)alt — byu)du — a(t) — 220" (t)ks
— La,b” [u? K (u)a(t*)du — o ()ks]

— 0
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