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Abstract

We use a simple example to illustrate two important properties of Bootstrap.
They are otherwise difficult to proof and not intuitively clear.
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1. Introduction

Bootstrap method is one of the most important breakthroughs in statistics in the recent two

decades. Coupled with the rapid increase of computing power it revolutionized statistics of

90’s, as some people put it.

One of the important advantages of bootstrap is that it can provide more accurate dis-

tribution approximations for some statistic than the usual asymptotic method can (second

order accuracy). This may leads to more accurate confidence intervals, tests etc. Yet the

proof of this important property is based on the Edgeworth expansion and beyond the course

work at least at Master’s level and below. What makes this harder for students is that this

property is not at all clear from intuition.

Efron and Tibshirani (1993) only defines the second order accuracy but did not elaborate

why it is the case. The research monograph of Hall (1992) contains such a proof. But Hall’s

book is inaccessible for Master’s students and a hard one even for advanced Ph.D. students.

We present an example that nicely illustrate this fact and the advantage of bootstrapping

a pivatol verses a non-pivatol. We have got good response using this example at an applied

statistics course at the introductory Master level. It could even be taught at the advanced

undergraduate level.

Of course this is by no means a substitution for proof. But students get a feel of what is

going on and is great for understanding bootstrap and intuition building.
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2. An Example of Bootstrap Distribution Approximation

In this example all distributions can be computed exactly. So the performance of bootstrap

can be measured exactly.

Suppose X1, X2, · · · , Xn are independent and identically distributed random observations

with uniform distribution: U [0, θ] with θ > 0, a parameter to be estimated. The maximum

likelihood estimator of θ is X(n), the nth order statistics.

Let us ask what is the distribution of the statistic n
X(n)−θ

θ . A look at introductory

statistics book will remind us that P (X(n) < t) = [P (X1 < t)]n. From this it is easy to show

(homework?) that

P

(
n(X(n) − θ)

θ
< t

)
= P

(
n(

X(n)

θ
− 1) < t

)
=
(

1 +
t

n

)n

(1)

for −n < t ≤ 0. Thus we have asymptotically

lim
n→∞

P

(
n(

X(n)

θ
− 1) < t

)
= et (2)

for −∞ < t ≤ 0.

Now let us see how bootstrap try to approximate this distribution.

Bootstrap method

1. Create a completely known distribution (can depend on Xi’s) that is “close” to the

original distribution where the original data, X1, · · · , Xn, came from, namely U [0, θ].

A natural candidate here is U [0, θ̂] = U [0, X(n)].

2. Repeat the same statistical procedure of the real problem to this “completely known but

close to the unknown” or “bootstrap” population: U [0, θ̂] and ask the same question.

In other words draw Y1, Y2, · · · , Yn ∼ iid U [0, θ̂] and compute the MLE, Y(n), based on

the Y ′s. Ask what is the distribution of

n(Y(n) − θ̂)

θ̂
.

3. Since the population is known, we can answer the question posed either analytically or

if necessary, use Monte Carlo to help you answer the question. Monte Carlo is possible

since the population is completely known.
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4. Keep your finger crossed, hoping that the answer to the bootstrap world is also a good

approximate answer to the real, original problem.

Let us carry out these steps for the problem at hand.

If Y1, Y2, · · · , Yn ∼ iid U [0, θ̂], then similar to (1) we can show that (Remember here the

Y ′s are random but X ′s are treated as given constants. In other words we conditioning on

the X ′s.)

P ∗
(

n(Y(n) − θ̂)

θ̂
< t | θ̂

)
= (1 +

t

n
)
n

(3)

for −n < t ≤ 0, where * means conditional probability.

It is clear that in this case the two distributions (1) and (3) are exactly the same:

P

(
n

X(n) − θ

θ
< t

)
≡ P ∗

(
n

Y(n) − θ̂

θ̂
< t | θ̂

)
So point 4 above is confirmed for this case. But the asymptotic distribution (2) has an error

of

P

(
n

X(n) − θ

θ
< t

)
− lim

n→∞
P

(
n(

X(n)

θ
− 1) < t

)
= (1 + t/n)n − et = O(

1
n

) .

Here the Bootstrap approximate distribution is exact and has no error, while the asymp-

totic approximation has O(1/n) error. So “the bootstrap approximation is better” (than the

limiting distribution approximation).

Remark: The probability

P ∗
(

n
Y(n) − θ̂

θ̂
< t | θ̂

)

can be found by using Monte Carlo method if needed (by repeatedly generate the Y ′s and

use sample frequency to approximate the probability). This comes in handy when either the

population distribution or the statistic is more complicated.

Remark: The rate of the errors in this example, O(1/n) and zero, is not typical though.

Typically those rates are slower, O( 1√
n
) and O( 1

n).

3. The Advantage of a Pivatol

Why do we look at the distribution of n(X(n)

θ − 1) rather than something else? There are

two reasons: (1) knowing its distribution we can easily find a confidence interval of θ. (2) it
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is also a pivatol, meaning its distribution is free of unknown parameters.

Now let us try the same exercise but for the statistic n(X(n) − θ). The point (1) is still

valid here but it is not a pivatol.

Similar calculation show that the bootstrap distribution has an error of order comparable

to the asymptotic theory. The true distribution is

P
(
n(X(n) − θ) < t

)
=
(

1 +
t

nθ

)n

. (4)

The asymptotic distribution is

lim (1 +
t

nθ
)n = et/θ −∞ < t ≤ 0 .

Since θ is unknown, we have to substitute θ by θ̂ and use the following as the approximation

by the asymptotic theory

et/θ̂ . (5)

The bootstrap distribution in this case is(
1 +

t

nθ̂

)n

. (6)

Notice |θ̂ − θ| = |X(n) − θ| = Op(1/n), we have

|(4)− (6)| = Op(1/n) and |(4)− (5)| = Op(1/n) .

Therefore they have the same order of error.

This shows that bootstrapping a pivatol can often improve approximation. The effort

to make a statistic become a pivatol is sometimes termed “studentization”. Bootstrap a

studentized statistic is often preferred.

This same example can also be used to illustrate Bootstrap bias correction in action (since

the MLE here is biased).

Example 2 Suppose now the random variables are normally distributed: X1, X2, · · · , Xn ∼

N(θ, σ2) with both θ and σ unknown.

For the statistic (pivatol)
√

n
x̄− θ

s
(2.1)
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and it has student t distribution with n-1 degrees of freedom, The (parametric) bootstrap

use the population of N(x̄, s2) and iid observations Yi from this population. The distribution

for (2.1) is approximated by the distribution of

P ∗(
√

n
Ȳ − X̄

sy
< t). (2.2)

It is not hard to see that the distributions in (2.1) and (2.2) are both the student t-

distribution with n − 1 degrees of freedom. So that the approximation of (2.2) to (2.1) is

perfect.

Now we change the statistic to
√

n(X̄ − θ)

show that (left as homework) the bootstrap distribution is not the same as the original

distribution.

Bisa correction example: The MLE is often biased. Suppose we want to assess how

large the bias is likely to be.

Definition:

Bias = EθX(n) − θ = expected value of estimator - true parameter value

Remark: We can explicitly calculate the bias in this case: (in other cases, We may not be

able to do so). Since

EθX(n) =
n

n + 1
θ

so

Bias =
n

n + 1
θ − θ = θ

−1
n + 1

Notice this is still unknown since θ is an unknown parameter.

We can show

EY(n) =
n

n + 1
θ̂

and thus the bias in the bootstrap world is:

Biasboot =
n

n + 1
θ̂ − θ̂ = θ̂

(−1)
n + 1
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We see that this is a good approximation to the real world bias θ (−1)
n+1 . The difference is of

the order 1
n2 ... one order better than original bias. So, point 4 is confirmed in this case.

An improved estimate (bias corrected) is

θ̃ = θ̂ −Biasboot = θ̂ − −θ̂

n + 1
=

n + 2
n + 1

θ̂

Question: How about iterate the bias correction?

Answer : S.E. is dominating the M.S.E, so, correct bias is not as important. beside, We only

got an ESTIMATE of bias.

Remark 3: The expectation in the Bootstrap world, is in fact a conditional expectation,

condition on the value of θ̂ = X(n). Usually this is the case, expectation, probability are all

conditional in Bootstrap world. (Conditional on the observed Data Sample)
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An example of bootstrap failure: Both Efron/Tibshirani and Hinkley/Davison men-

tioned this example of bootstrap failure.

X1, X2, · · ·Xn iid U [0, θ], and the MLE of θ is θ̂ = X(n). The objective is to estimate the

bias of θ̂, which is θ/(n + 1).
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We use nonparametric bootstrap. If Y1, · · · , Yn are iid F̂n(t) (the empirical distribution

function based on the X’s) then the distribution of Y(n) is discrete and

P (Y(n) = max(Xi)) = 1− (1− 1/n)n → 1− exp(−1) = 0.6

They argue that since the true distribution of θ is continuous this is an example of

bootstrap failure.

But this is not very clearly a failure, since

P (θ − 1/n < X(n) < θ) → 1− exp(−1) = 0.6

So the bootstrap distribution is just a discretization of the continuous, true distribution

of θ̂ = X(n).

Now we compute the example of correct the bias using the nonparametric bootstrap. We

show that the bias correction is not working, in the sense that the biasboot is approx half the

true bias.

The distribution of Y(n) is given by

P (Y(n) = X(i)) = ( i
n)n − ( i−1

n )n

Therefore EY(n) =
∑

X(i)

[
( i

n)n − ( i−1
n )n

]
.

Recall EX(i) = iθ/(n + 1) we have E(EY(n)) =
∑ iθ

n+1 [( i
n)n − ( i−1

n )n]

Lemma Assume WLOG θ = 1, we have

E(EY(n)) =
n∑

i=1

i

n + 1

[
(
i

n
)n − (

i− 1
n

)n
]

=
∫ 1

0
tdtn +

ξ

n

The difference, ξ
n , is larger (smaller?) than 0.4/n.

Notice
∫ 1
0 tdtn = n/(n + 1).

The expectation of biasboot is

E(X(n) − EY(n)) =
nθ

n + 1
−
[

nθ

n + 1
− ξθ

n

]
=

ξθ

n

In other words, the biasboot is about half the true bias.
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