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1 Introduction

We will discuss the general principles of the bootstrap, and describe two applications of the boot-
strap to constructing approximate confidence intervals for an unknown parameter. We will illustrate
these methods, together with the well-known Fisher z-transform, to find confidence intervals for the
correlation coefficient of some bivariate normal data taken from our text (Anderson [1]). Finally,
we will give the results of some simulations designed to compare the coverage properties of the
bootstrap confidence intervals with those obtained by the Fisher transform.

2 The Idea of the Bootstrap

Say that we have a sample ~x = (x1, . . . , xn), where the xi are drawn from some unknown distribution
FX . 1 We want to estimate an unknown parameter θ of FX (hereafter abbreviated F ). For example,
θ could be the mean or the median of F , or the correlation coefficient of F if F is bivariate. If we
wish, we may write θ = θ(F ) to indicate that θ depends on F .

We estimate θ by means of a statistic θ̂, the value of which depends on our sample ~x. Thus we
may write θ̂ = θ̂(~x). For example, if θ is the mean of F , then θ̂ may be the average of the sample
values x1, . . . , xn.

Part of our job is to get some idea of the accuracy of θ. We would be helped greatly in this if
we knew the true distribution of θ̂, denoted Fθ̂. Of course, Fθ̂ depends on the original distribution
F , so we can (and indeed will) write it as Fθ̂(F ), even though the notation is starting to look awful.
If we know Fθ̂ exactly, then we can go on to compute the variance of θ̂, construct exact confidence
intervals for θ, and so on. In some cases, as when we are estimating the mean of a distribution that
we know is normal (or know is exponential, or some such thing), we can compute Fθ̂. Quite often,
however, we do not know F and are not willing to assume much about it. It is also not usually
feasible to get more samples from F in order to see how θ̂ changes from sample to sample. How,
then, are we to approximate Fθ̂?

Well, we do at least have our sample ~x. This sample determines the empirical distribution F̂
defined by

F̂~x(t) def=
#{xi | xi ≤ t}

n
,

1The vector notation is not meant to imply that we are doing multivariate analysis, since the xi themselves may
be either univariate or multivariate.
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where #A denotes the number of elements in the set a. We know that the empirical distribution
F̂~x (written F̂n when we want to emphasize dependence on the sample size, or just F̂ for short) is
usually a pretty decent approximation of F , especially as the sample size n goes up. In fact, we
have:

Theorem 1 With probability 1,

lim
n→∞

sup
−∞<t<∞

| F̂n(t)− F (t) |= 0.

Much stronger results are known. See Serfling ([4], Section 2.1) for more information.
Since F̂ is known to us, the distribution of θ̂ when we consider F̂ to be the original distribution

from which samples are drawn, can in principle be computed exactly. We will write this distribution
as Fθ̂(F̂ ), without apology.

We know from Theorem 1 that F̂ is liable to be close to F . It seems plausible, therefore, that
Fθ̂(F̂ ) is liable to be close to Fθ̂(F ), the true distribution of θ̂ which we seek. We can, in principle,
get hold of Fθ̂(F̂ ). The foregoing suggests the

Bootstrap Principle: Approximate Fθ̂(F ) by Fθ̂(F̂ ).

We can see now the reason for the name “bootstrap”. One gets an idea of the distribution of θ̂ by
using only the original sample from which θ̂ was computed in the first place!

Of course, it is not usually feasible to compute Fθ̂(F̂ ) precisely. In so doing we would have to
compute θ̂(~y) for each sample ~y of size n that could be drawn from the original data x1, . . . , xn.
Unfortunately, the number of possible samples ~y is C2n

n , the number of ways of choosing n objects
from 2n objects. This latter quantity grows rapidly with n.

Since we do not have the time to compute the value of θ̂ for all possible samples from F̂ , we
usually perform Monte-Carlo simulation. That is, we choose some large number B (B = 2000
usually suffices), and we repeat the following process B times: draw at random, with replacement,
a sample ~y from x1, . . . , xn, and compute θ̂? = θ̂(~y). The values θ̂? thus generated determine an
empirical distribution called F̂θ̂(F̂ ), in order to emphasize the dependence on the original empirical
distribution F̂ from which the ~y were chosen.2

By Theorem 1, we know that F̂θ̂(F̂ ) gets closer to Fθ̂(F̂ ), as B → ∞. Hence for large enough
B we may take F̂θ̂(F̂ ) as an approximation of the desired true distribution of θ̂.

Figure 1 (appended) illustrates these ideas. Arrows in the figure represent approximations.
The advantage of the Bootstrap Principle is that it applies to a wide variety of statistical

problems, with no assumptions on the underlying distribution. Its main disadvantage is the non-
trivial amount of computation involved.

3 Bootstrap Confidence Intervals

Numerous methods have been suggested for constructing bootstrap confidence intervals. Many
of them are described in Efron and Tibshirani [2]. We will discuss the most naive of these, the
so-called percentile method, and one of the most advanced: bias-corrected and accelerated (or BCA
for short).

2OK, we apologize for this notation.
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3.1 The Percentile Method

Let’s say that we want a 1 − α confidence interval for θ. (For example, α = .10 denotes 90%
confidence.) We can take the middle 100(1 − α) percent of F̂θ̂(F̂ ). That is, we sort the B values
of θ̂(~y) that were obtained during the Monte-Carlo simulation, and throw out lowest Bα/2 values,
as well as the highest Bα/2 values. Our confidence interval will have as its lower (respectively,
upper) limit the lowest (respectively, the highest) remaining value. More precisely, the interval we
construct is

(θ̂?
α/2, θ̂

?
1−α/2)

where θ̂?
γ denotes the 100γ percentile point of F̂θ̂(F̂ ).

The reader should bear in mind that other, more sophisticated, methods go by the same name.
See Hall [3] for more details.

3.2 Bias-Corrected and Accelerated

It may be helpful to begin by reviewing the standard approaches to constructing confidence inter-
vals:

• by a direct application of the central limit theorem, or

• by applying appropriate transformations and then appealing to the CLT.

When the distribution of θ̂ is asymptotically normal (as is the case when θ̂ is the sample average
and the underlying distribution has finite second moment, or when θ̂ is the sample correlation
coefficient and the underlying distribution is multivariate normal), one may form an approximate
1− α confidence interval for θ as:

(θ̂ − zα/2σ̂θ̂, θ̂ + z1−α/2σ̂θ̂)

where σ̂θ̂ denotes the square root of an estimate of the variance σ2
θ̂

of θ̂, and zγ denotes the 100γ
percentile point of the standard normal distribution. Of course, such confidence intervals are not
exact since the distribution of θ̂ is not exactly normal.

In some cases we are able to apply a transformation φ to the estimator θ̂ which is chosen so
that the distribution of the new random variable, φ(θ̂), is closer to normal than is the distribution
of θ̂. We then form a confidence interval for φ(θ) in the usual way, and apply φ−1 to the endpoints
of this interval in order to obtain a confidence interval for θ. Such intervals are more accurate than
those formed by applying the CLT directly.

In the case of sample correlation, we have the well-known z-transform, first suggested by R.A.
Fisher. This transformation is defined by:

z = φ(r) =
1
2

log
(

1 + r

1− r

)
,

where r is the sample correlation coefficient. Not only is Fz closer to normal than is Fr, but also
the variance of z is essentially independent of the unknown parameter ρ, the true correlation. Such
transformations are said to be “variance-stabilizing”.
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Of course, the transformation z is not perfect. Fz is still a bit skewed. Also, recall ([1], p. 123)
that

E(z) = E(φ(r)) ≈ φ(ρ) +
ρ

2n
,

so that z is somewhat biased. (A transformation φ is said to be unbiased if E(φ(θ̂)) = φ(θ).)
The idea for the BCA method begins with a fantasy: suppose we knew of a transformation

φ that was ideal, in the sense that for any value of the parameter θ, Fθ̂ was normal. We would
certainly be interested in making use of such a transformation. However, φ could well be biased,
and both the bias and the variance σ2

φ(θ̂)
of φ(θ̂) probably depend on the unknown parameter θ

(through the distribution of θ̂, which depends on θ).
In order to make good use of φ, we would need to know something about σ2

φ(θ̂)
so that we could

construct a confidence interval for φ(θ). We would also need to know something about the bias of
φ in order to correct for it, before we apply φ−1 to obtain a confidence interval for θ itself. All of
this seems pretty much a pipe-dream, since we don’t know φ at all.

UN-deterred, the bootstrapper fantasizes further, and supposes that this ideal φ also has the
property that σφ(θ̂) (which, as we saw, depends on θ), is actually a linear function of φ(θ). It then
becomes possible for the bootstrapper to obtain estimates of the bias and of σθ̂ without knowing
φ at all ! Details of this process appear in Chapter 22 of [2]. The reader should note that the
assumption of linearity is reasonable, because a smooth function may always be approximated
locally by a linear one.

4 An Illustration

In these days of powerful machines and slick software, the computational aspects of the bootstrap
are not overly burdensome. The appended program, written in the SAS/IML language, constructs
confidence intervals for the correlation of given bivariate data, using all three of the methods
outlined so far:

1. normal-theory enhanced by the z-transform;

2. the bootstrap percentile;

3. Bias-Corrected and Accelerated.

In our program, the boot module constitutes the “engine” for the bootstrap approach. It is
quite general, and can be used for any data, univariate or multivariate, provided that it calls the
appropriate function to compute θ̂ for the sample drawn from F̂ . In our situation, the appropriate
call is to the corr function module, which computes the sample correlation. If you were interested
in estimating the mean of a distribution, you would want to replace the call to corr with a call to
a function module that computes the sample average. Similar remarks apply to the bca module,
which actually constructs the BCA confidence interval. The bper module, which constructs the
bootstrap percentile interval, can be used without modification in other programs (of course, you
have to feed it the sorted θ̂? values obtained from boot. Feel free to use any of these routines in
your own work.

For the sake of illustration, the program applies these methods to the data on head-length
and head-breadth that is given in Table 3.3 of [1] (first son only). Results are given following the
program listing.
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5 Performance of the Bootstrap

Consider a method for generating a 1−α confidence interval Iα
n (~x) from a sample ~x of size n. The

method may be regarded as an interval-valued random variable, through the dependence of the
interval on the sample ~x. Such a method is said to be r-order accurate if

P (θ ∈ Iα
n ) = 1− α + O(n−

r
2 ),

for all values of α. The BCA method produces confidence intervals that are second-order accurate
no matter what the initial distribution may be. (A proof of this fact, based on the Edgeworth
expansion, may be found in [3].) The method based directly on the CLT is usually only first-order
accurate (although one may do better if the underlying distribution is symmetric and close to
normal). The bootstrap percentile method cannot lay claims to the same level of performance as
the BCA, but it still performs acceptably in simulations, and is easier to explain to the boss than
is the BCA.

The BCA performs better asymptotically. However, this improved performance may only be
apparent for larger values of n. What about the smaller sample sizes that are encountered suf-
ficiently often in practice as to rise to the demand for better confidence intervals? To compare
the two bootstrap methods with Fisher’s z for the case of sample correlation, I wrote a simulation
program in SAS/IML. (By the way, now that I’ve run these programs, I cannot recommend SAS as
an environment for statistical simulation. Try MatLab.) Results are shown in the appended tables.

Here is how to interpret these tables.
The top table refers to results obtained from a bivariate distribution of the form(

X1

X2

)
=

[
1 2

−3 1

](
W1

W2

)
,

where W1 and W2 are iid ∼ N(0, 1). The true correlation ρ of X1 and X2 is about -.14 — not
much at all.

For each of the given sample sizes n, I did the following 500 times: I got a sample of size n from
the bivariate distribution, and constructed 90% confidence intervals for ρ using each of the three
methods we have discussed. For each interval, I checked to see whether or not it contained ρ. If it
did not contain ρ, I called it a lemon, and updated a counter which recorded the total number of
lemons seen so far in confidence intervals generated by that method.

Lemon-counts for each of the methods are given in the final three columns of the table. A
method that produces perfect 90% confidence intervals should produce about 50 lemons, give or
take 7 or so, in 500 tries. The BCA performs better than I would have expected at smaller sample
sizes, but it cannot be said to have beat out Fisher’s z, which is playing on its home turf, and is a
mighty good method anyway.

The second table works just as above except that the matrix used to produce the bivariate
distribution is [

1 −1
−.8 1.2

]
which gives a value for ρ that is very nearly -1.
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6 A Conversation About The Bootstrap by Homer White

The so-called bootstrap is a powerful tool for statistical inference that was proposed in 1978 by
Bradley Efron at Stanford. Since then many versions of the bootstrap have been developed to
tackle a wide array of problems in statistics. Here, in a nutshell, is the core idea of the bootstrap.

Suppose that you are studying a new drug that is supposed to prolong the survival time of
certain patients with a serious form of cancer. You give the new drug to 125 cancer patients, and
then wait around like a vulture until they all die. Now you might want to estimate the average
amount of time that a patient, given this drug, will survive. A very reasonable estimate of this
would be the average of the survival times of your 125 patients (this is called the sample average
or the sample mean. This sample mean is intended to approximate the true mean survival time.
(The true mean survival time is the average survival time for all possible cancer patients when they
are given this drug. Clearly we cannot compute the true mean because we can’t give this drug to
every past, present, and future cancer patient in the world.)

Naturally we cannot expect that the sample mean is exactly equal to the true mean. After all,
our sample of 125 patients, even if it is chosen completely at random, is not likely to be perfectly
representative of the population of all cancer patients. By the luck of the draw we could have,
say, a higher proportion of really sick people in our sample than occurs in the general population
of people with cancer: then the sample mean survival time would be lower than the true mean.
The reverse could be the case as well: maybe our sample contains an unusually large number of
people with strong constitutions and strong wills to survive. In this case our sample mean would
be somewhat bigger than the true mean.

Therefore, when we present the results of our study to the boss, (or the doctors or whoever)
we can’t just report the sample mean. People will also want us to give some indication of how
close the sample mean is likely to be to the true mean. (For those that know the variance of the
mean is 1/n of the variance of the population, you may be thinking that this is easy. Try median
or trimmed mean!)

One way to give people an idea of the accuracy of the sample mean is to construct a confidence
interval for the true mean. A confidence interval is just an interval of numbers (a, b) that you hope
will contain the true mean. Now any confidence interval has a certain level of confidence associated
with it. For example, let’s say that the boss would like to be 90% confident that the true mean
lies within the interval. Then we would construct a 90% confidence interval for the mean. There
are many methods for constructing such a confidence interval. If such a method is any good, then
it should “work” about 90% of the time. That is, if we used our method over and over again to
construct confidence intervals in hundreds or thousands of independent situations (say in other
studies of cancer patients) then about 90% of the confidence intervals that we construct in each
situations should contain the true mean that we are trying to estimate in that situation.

In our specific case, suppose that the sample mean survival time turned out to be 2.5 years.
Maybe our 90% confidence interval is computed to be (2.1,2.9). (I am just making up these numbers
for the sake of illustration— we haven’t yet discussed any method for constructing confidence
intervals.) Given this interval, the boss could say: “Well, the true mean survival time of any
patients who could be given this drug is around 2.5 years, give or take some. I can be about 90%
sure that the true mean is more than 2.1 years and less than 2.9 years, but I have to accept the
possibility that the true mean could be less than 2.1 years or more than 2.9 years. I guess I can
live with that uncertainty.”
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How are such intervals constructed? If you consult the elementary statistics textbooks, you will
find chapters devoted to this subject. The methods in these chapters all rely on some underlying
assumptions about the type of distribution of the survival time over all possible cancer patients. A
distribution is a statistical function that, roughly speaking, tells you what proportion of all cancer
patients would survive for a given period of time (i.e., maybe 30% will live less than one year,
10% will survive more than a year but less than 1.5 years, and so on). The methods given in the
elementary texts will give reasonably accurate confidence intervals so long as this distribution is
close to normal type. (Or the only measurment you are interested is the mean, not median etc.) A
distribution is said to be normal if, when you make a histogram of all possible data (not just the
data you have in your sample), you get a histogram with a bell-shape (see the appended figures).
There is a specific mathematical formula for a normal distribution, but this need not concern us
now. The further away from normal type the underlying distribution is, the less accurate our
confidence intervals will be.

In many cases it is quite all right to assume that the underlying distribution is normal type.
For example, if we are trying to estimate the average height of female students at Pikeville college
by measuring 20 of them at random, then the methods in the textbooks will do fine, because the
distribution of heights is usually quite close to normal (most people are near the average height,
and the proportion of really tall or really short people drops off quickly). However, if we were trying
to estimate the average income of U.S. residents, based on a random sample of 20 residents, then
the methods in the text, while still OK, don’t work quite as well. That’s because the underlying
distribution of income for U.S. residents is not very close to normal — in fact, it is rather skewed
to the right (see the figures). In our situation, with the cancer patients and the new drug, we have
virtually no information about the underlying distribution. The methods in the text could be used
to give the boss an “answer” but we would know in our hearts that the answer might not be a very
good one.

In order to construct a good confidence interval, we would need to have some idea of how much
the sample average would hop around, from sample to sample. In a perfect world, we could get an
idea of this by taking another random sample of 125 patients, giving them the drug, and seeing how
long they live on the average. Then we could take yet another sample of 125 patients, give them the
drug, compute the sample mean survival time for this sample, and so on. If we grabbed many such
samples (say, 1000 or so), then we could look at the 1000 sample means that we computed, and see
how much they vary. If they vary a lot, we would have to construct a fairly wide 90% confidence
interval. If they don’t vary much at all, then we would construct a fairly narrow confidence interval
(there are systematic methods for doing this—it’s not just guesswork). Unfortunately, this is not
a perfect world: these 125 cancer patients are the only ones we will ever get to look at.

In order to get an idea of how much the sample mean would vary from sample to sample, we
will have to work only with the sample we have already collected. What can we do?

Here is where the bootstrap comes in. Since we cannot take more samples from the original
population (all possible cancer patients), why not take more samples from the existing sample
itself? After all, a histogram based on our 125 patients’ survival times is probably not going to be
too different from a histogram of the survival times of all possible cancer patients, because our 125
patients are a random sample from all cancer patients and are therefore fairly representative of all
cancer patients.

To make this idea clearer, let’s illustrate it with specific values. Suppose that the survival times
for the original 125 patients are as given in the appendix.
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From this list of survival times, choose one number at random. Record it, and put it back in
the list. Then choose another number at random (it could be the same number as you drew the
first time, but of course probably won’t be). Record this number, and put it back again. Keep
repeating this process until you have drawn 125 numbers (same as the size of the original sample).
Now compute the average of the 125 numbers that you have drawn. Call this average A1.

Now repeat the above process again, getting a new average A2. Keep repeating this process
many times (say, 2000 times). You will get a list of 2000 averages. These averages will hop around
a little bit.

I actually forced my computer to do the above experiment. The first five re-samples, together
with the five averages computed from them, are recorded on an attached sheet. The entire list of
2000 averages, sorted from smallest to highest, is printed on the next sheet. Look at the list to see
how the averages vary.

The Bootstrap Principle says that the re-sample averages will hop around (sample average)
about as much as the sample averages would have hopped around (population average) if we could
have taken our further samples from the original population. This is very important, so think
about it for a few minutes.

Here‘s how we can construct a 90% confidence interval for the true mean survival time. Take
your list of 2000 re-samples averages. Hack off the lowest 5% of the list (that’s the first 100 values
in the sorted list). Then hack off the highest 5% of the list (the last 100 values in the sorted list).
Your 90% confidence interval will be the interval from the lowest remaining number to the highest
remaining number. Our 90% interval is given in one of the appended printouts. This method of
constructing a 90% confidence interval is called the bootstrap percentile method. Notice that the
interval spans the middle 90% of the re-sampled averages. Other, more sophisticated bootstrap
methods for confidence intervals have been developed, but they are all variations of this basic
method.

I should point out that the above method does not produce exact 90% confidence intervals.
That is, if I could repeatedly draw samples of 125 cancer patients from the original population,
give them the drug, and compute a 90% confidence interval using the bootstrap method, then it
would not be true that exactly 90% of my confidence intervals would contain the true mean survival
time. However, the percentage of confidence intervals that do contain the true mean survival time
would be fairly close to 90%. That’s good. No other method produces exact intervals, either.

Well, that’s the idea of the bootstrap. People are always coming up with ways to use this
idea in other situations. People have been trying to use this method to make estimates based on
multivariate data. Data is multivariate when it comes at you with more than one number at a time.
For example, in a study of the human body, you might need to make more than one measurement
on each person in your study. For example, for each person you could record their weight, height,
and nose length. If you wanted to estimate the true mean weight and true mean height and true
mean nose length of all people in the population, based on your sample, you could just treat each of
those variables separately by the bootstrap method above. However, if you are interested in certain
other quantities (like the trimmed mean discussed in some elementary textbooks), you can’t do the
same thing. You have to deal with the data as multivariate data. In this case, when you come to
the part of the bootstrap where you throw out the 5% highest and 5% lowest of your re-sampled
values, you get stuck: how do you talk about “highest” and “lowest” in two or more dimensions?
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