smooth.spline package:modreg R Documentation

Fit a Smoothing Spline

Description:

 Fits a cubic smoothing spline to the supplied data.

Usage:

 smooth.spline(x, y = NULL, w = NULL, df, spar = NULL,

 cv = FALSE, all.knots = FALSE, nknots = NULL,

 df.offset = 0, penalty = 1, control.spar = list())

Arguments:

 x: a vector giving the values of the predictor variable, or a

 list or a two-column matrix specifying x and y.

 y: responses. If `y' is missing, the responses are assumed to be

 specified by `x'.

 w: optional vector of weights of the same length as `x';

 defaults to all 1.

 df: the desired equivalent number of degrees of freedom (trace of

 the smoother matrix).

 spar: smoothing parameter, typically (but not necessarily) in

 (0,1]. The coefficient lambda of the integral of the squared

 second derivative in the fit (penalized log likelihood)

 criterion is a monotone function of `spar', see the details

 below.

 cv: ordinary (`TRUE') or ``generalized'' cross-validation (GCV)

 when `FALSE'.

all.knots: if `TRUE', all distinct points in `x' are used as knots. If

 `FALSE' (default), a subset of `x[]' is used, specifically

 `x[j]' where the `nknots' indices are evenly spaced in `1:n',

 see also the next argument `nknots'.

 nknots: integer giving the number of knots to use when

 `all.knots=FALSE'. Per default, this is less than n, the

 number of unique `x' values for n > 49.

df.offset: allows the degrees of freedom to be increased by `df.offset'

 in the GCV criterion.

 penalty: the coefficient of the penalty for degrees of freedom in the

 GCV criterion.

control.spar: optional list with named components controlling the root

 finding when the smoothing parameter `spar' is computed,

 i.e., missing or `NULL', see below.

 Note that this is partly experimental and may change with

 general spar computation improvements!

 low: lower bound for `spar'; defaults to -1.5 (used to

 implicitly default to 0 in R versions earlier than 1.4).

 high: upper bound for `spar'; defaults to +1.5.

 tol: the absolute precision (tolerance) used; defaults to

 1e-4 (formerly 1e-3).

 eps: the relative precision used; defaults to 2e-8 (formerly

 0.00244).

 trace: logical indicating if iterations should be traced.

 maxit: integer giving the maximal number of iterations;

 defaults to 500.

 Note that `spar' is only searched for in the interval [low,

 high].

Details:

 The `x' vector should contain at least four distinct values.

 Distinct here means ``distinct after rounding to 6 significant

 digits'', i.e., `x' will be transformed to `unique(sort(signif(x,

 6)))', and `y' and `w' are pooled accordingly.

 The computational lambda used (as a function of `spar') is lambda

 = r * 256^(3*spar - 1) where r = tr(X' W X) / tr(Sigma), Sigma is

 the matrix given by Sigma[i,j] = Integral B''[i](t) B''[j](t) dt,

 X is given by X[i,j] = B[j](x[i]), W is the diagonal matrix of

 weights (scaled such that its trace is n, the original number of

 observations) and B[k](.) is the k-th B-spline.

 Note that with these definitions, f_i = f(x_i), and the B-spline

 basis representation f = X c (i.e. c is the vector of spline

 coefficients), the penalized log likelihood is L = (y - f)' W (y -

 f) + lambda c' Sigma c, and hence c is the solution of the (ridge

 regression) (X' W X + lambda Sigma) c = X' W y.

 If `spar' is missing or `NULL', the value of `df' is used to

 determine the degree of smoothing. If both are missing,

 leave-one-out cross-validation (ordinary or ``generalized'' as

 determined by `cv') is used to determine lambda. Note that from

 the above relation, `spar' is spar = s0 + 0.0601 * log(lambda),

 which is intentionally different from the S-plus implementation of

 `smooth.spline' (where `spar' is proportional to lambda). In R's

 (log lambda) scale, it makes more sense to vary `spar' linearly.

 Note however that currently the results may become very unreliable

 for `spar' values smaller than about -1 or -2. The same may

 happen for values larger than 2 or so. Don't think of setting

 `spar' or the controls `low' and `high' outside such a safe range,

 unless you know what you are doing!

 The ``generalized'' cross-validation method will work correctly

 when there are duplicated points in `x'. However, it is ambiguous

 what leave-one-out cross-validation means with duplicated points,

 and the internal code uses an approximation that involves leaving

 out groups of duplicated points. `cv=TRUE' is best avoided in

 that case.

Value:

 An object of class `"smooth.spline"' with components

 x: the distinct `x' values in increasing order, see the Details

 above.

 y: the fitted values corresponding to `x'.

 w: the weights used at the unique values of `x'.

 yin: the y values used at the unique `y' values.

 lev: leverages, the diagonal values of the smoother matrix.

 cv.crit: (generalized) cross-validation score.

pen.crit: penalized criterion

 crit: the criterion value minimized in the underlying `.Fortran'

 routine `sslvrg'.

 df: equivalent degrees of freedom used. Note that (currently)

 this value may become quite unprecise when the true `df' is

 between and 1 and 2.

 spar: the value of `spar' computed or given.

 lambda: the value of lambda corresponding to `spar', see the details

 above.

 iparms: named integer(3) vector where `..$ipars["iter"]' gives number

 of spar computing iterations used.

 fit: list for use by `predict.smooth.spline', with components

 knot: the knot sequence (including the repeated boundary

 knots).

 nk: number of coefficients or number of ``proper'' knots plus

 2.

 coef: coefficients for the spline basis used.

 min, range: numbers giving the corresponding quantities of

 `x'.

 call: the matched call.

Note:

 The default `all.knots = FALSE' and `nknots = NULL' entails using

 only O(n^{0.2}) knots instead of n for n > 49. This cuts speed

 and memory requirements, but not drastically anymore since R

 version 1.5.1 where it is only O(nk) + O(n) where nk is the number

 of knots. In this case where not all unique `x' values are used as

 knots, the result is not a smoothing spline in the strict sense,

 but very close unless a small smoothing parameter (or large `df')

 is used.

Author(s):

 B.D. Ripley and Martin Maechler (spar/lambda, etc).

References:

 Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression

 and Generalized Linear Models: A Roughness Penalty Approach;

 Chapman and Hall.

See Also:

 `predict.smooth.spline' for evaluating the spline and its

 derivatives.

Examples:

 library(modreg)

 data(cars) ## N=50, n (# of distinct x) =19

 attach(cars)

 plot(speed, dist, main = "data(cars) & smoothing splines")

 cars.spl <- smooth.spline(speed, dist)

 (cars.spl) ## This example has duplicate points, so avoid cv=TRUE

 cars.spl2 <- smooth.spline(speed, dist, df=10)

 lines(cars.spl, col = "blue")

 lines(cars.spl2, lty=2, col = "red")

 lines(smooth.spline(cars, spar=0.1)) # spar: smoothing parameter (alpha) in (0,1]

 legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

 "s(* , df = 10)"), col = c("blue","red"), lty = 1:2,

 bg='bisque')

 detach()

 ##-- artificial example

 y18 <- c(1:3,5,4,7:3,2*(2:5),rep(10,4))

 xx <- seq(1,length(y18), len=201)

 (s2 <- smooth.spline(y18)) # GCV

 (s02 <- smooth.spline(y18, spar = 0.2))

 plot(y18, main=deparse(s2$call), col.main=2)

 lines(s2, col = "blue");

 lines(s02, col = "orange");

 lines(predict(s2, xx), col = 2)

 lines(predict(s02, xx), col = 3);

 mtext(deparse(s02$call), col = 3)

 ## The following shows the problematic behavior of `spar' searching: ??

 (s2 <- smooth.spline(y18, con=list(trace=TRUE,tol=1e-6, low= -1.5)))

 (s2m <- smooth.spline(y18, cv=TRUE, con=list(trace=TRUE,tol=1e-6, low= -1.5)))

 ## both above do quite similarly (Df = 8.5 +- 0.2)

density package:base R Documentation

Kernel Density Estimation

Description:

 The function `density' computes kernel density estimates with the

 given kernel and bandwidth.

Usage:

 density(x, bw = "nrd0", adjust = 1,

 kernel = c("gaussian", "epanechnikov", "rectangular", "triangular",

 "biweight", "cosine", "optcosine"),

 window = kernel, width,

 give.Rkern = FALSE,

 n = 512, from, to, cut = 3, na.rm = FALSE)

bandwidth package:base R Documentation

Bandwidth Selectors for Kernel Density Estimation

Description:

 Bandwidth selectors for gaussian windows in `density'.

Usage:

 bw.nrd0(x)

 bw.nrd(x)

 bw.ucv(x, nb = 1000, lower, upper)

 bw.bcv(x, nb = 1000, lower, upper)

 bw.SJ(x, nb=1000, lower, upper, method=c("ste", "dpi"))

