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The empirical likelihood is a general nonparametric inference procedure with many
desirable properties. Recently, theoretical results for empirical likelihood with certain cen-
sored/truncated data have been developed. However, the computation of empirical likeli-
hood ratios with censored/truncated data is often nontrivial. This article proposes a modified
self-consistent/EM algorithm to compute a class of empirical likelihood ratios for arbitrarily
censored/truncated data with a mean type constraint. Simulations show that the chi-square
approximations of the log-empirical likelihood ratio perform well. Examples and simula-
tions are given in the following cases: (1) right-censored data with a mean parameter; and
(2) left-truncated and right-censored data with a mean type parameter.
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1. INTRODUCTION

The empirical likelihood method was first proposed by Thomas and Grunkemeier
(1975) to obtain better confidence intervals in connection with the Kaplan-Meier estimator.
Owen (1988, 1990) and many others developed this into a general methodology. It has many
desirable statistical properties; see Owen (2001). A crucial step in carrying out the empiri-
cal likelihood ratio method is to find the maximum of the log-empirical likelihood function
(LELF) under some constraints. In all the articles mentioned above, this is achieved by using
the Lagrange multiplier method, which reduces the maximization over n− 1 variables to a
set of k equations. Furthermore, k is small and fixed as n goes to infinity. These equations
can be solved easily, and thus the empirical likelihood ratio can be obtained.

Recently, the empirical likelihood ratio method has been shown to work with certain
censored/truncated data involving a weighted mean or hazard parameter. Pan and Zhou
(1999) showed that, for right-censored data, the empirical likelihood ratio with a mean or
hazard constraint also has a chi-square limit (Wilks theorem). Murphy and van der Vaart
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(1997) demonstrated, among other things, that Wilks theorem also holds for doubly censored
data. For truncated data, we refer readers to Li (1995) for a similar result.

These theoretical results painted a bright future for application of the empirical likeli-
hood in the analysis of censored/truncated data. However, maximizing the censored/trun-
cated empirical likelihood under mean constraints remains difficult, as a simple Lagrange
multiplier calculation is often not available (see Examples 1 and 2 later). The articles cited
above that studied the theoretical properties of the censored empirical likelihood ratio do
not offer a viable computational method either.

This article proposes a modified self-consistent/EM algorithm to compute the cen-
sored/truncated data empirical likelihood ratio under mean type constraints. The proposed
algorithm can handle very general types of censored/truncated data as described by Turnbull
(1976). It can also handle either weighted mean or hazard constraints, but here the focus is
on the weighted mean constraints.

We have implemented this algorithm in R software (Gentleman and Ihaka 1996) for
right-, left-, or doubly censored data, and for left-truncated, right-censored data with a
mean type constraint. It is available as a user contributed package, called emplik on
CRAN http://cran.r-project.org. See the functions el.cen.EM() and el.ltrc.EM()
inside the emplik package.

Section 2 begins with a description of the proposed algorithm and proceeds to show
that the proposed self-consistent equation is equivalent to the log-likelihood equation. Sec-
tion 3 gives some specific calculations of the E-step for commonly seen types of cen-
sored/truncated data. Section 4 gives examples and simulations of the empirical likelihood
ratio computations. Section 5 contains some further discussion.

We end this section with two specific examples that introduce the notation and setup
of censored data, empirical likelihood, and the mean constraint. The computation of the
empirical likelihood ratio in these two examples can be handled easily by the proposed EM
algorithm, but is otherwise difficult to accomplish.

Example 1. Suppose iid observations X1, . . . , Xn ∼ F (·) are subject to right censor-
ing, so that we only observe

Ti = min(Xi, Ci) ; δi = I[Xi≤Ci], i = 1, . . . , n; (1.1)

where Ci is the censoring time for Xi. We assume that Ci is independent of Xi.
The log-empirical likelihood function (LELF) for F (·) based on the censored obser-

vations (Ti, δi) is

L(p) = LELF =
n∑

i=1


δi log pi + (1 − δi) log


 ∑

Tj>Ti

pj




 , (1.2)

where pi = ∆F (Ti) = F (Ti) − F (Ti−).
To compute the empirical likelihood ratio for testing the hypothesisH0 : mean(g(X)) =

µ, where g(·) and µ are given, we need to find the maximum of the above LELF with respect

http://cran.r-project.org
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to pi under the constraints

n∑
i=1

pig(Ti) = µ ,

n∑
i=1

pi = 1 , pi ≥ 0 . (1.3)

Arguments similar to those of Li (1995) show that the maximization will force the pi = 0
except where Ti is uncensored. We focus on finding those nonzero pis. Straightforward
application of the Lagrange multiplier method leads to the equations

δi

pi
+

n∑
k=1

(1 − δk)
I[Tk<Ti]∑
Tj>Tk

pj
− λ[g(Ti) − µ] − γ = 0 ; for δi = 1 ,

which are not easy to solve for the pi’s.

Example 2. Let X1, . . . , Xn be iid positive random variables denoting lifetimes. Let
the CDF of Xi be F . The censoring mechanism is such that Xi is observable if and only if
it lies inside the interval [Zi, Yi]. The Zi and Yi are positive random variables, independent
of Xi, with continuous distribution functions GL and GR, respectively, and Zi ≤ Yi with
probability one.

The lifetime Xi is said to be left-censored if Xi < Zi and right-censored if Xi > Yi.
The available information may be expressed by a pair of random variables: Ti, δi, where

Ti = max(min(Xi, Yi), Zi) and δi =




1 if Zi ≤ Xi ≤ Yi

0 if Xi > Yi

2 if Xi < Zi

i = 1, . . . , n.

(1.4)
See Chang and Yang (1987).

The log-empirical likelihood for the lifetime distribution F is

L(p) =
∑
δi=1

log pi +
∑
δi=0

log


 ∑

Tj>Ti

pj


+

∑
δi=2

log


 ∑

Tj<Ti

pj


 , (1.5)

where pi ≥ 0 and
∑

pi = 1.
With or without mean constraints, the Lagrange multipliers do not simplify the maxi-

mization of this empirical likelihood.

2. CONSTRAINED CDF WITH ARBITRARILY
CENSORED/TRUNCATED OBSERVATIONS

Before we get into the details, we first describe our (modified) EM computational
algorithm in a generic manner.

Given: censored/truncated data, a mean constraint equation for the CDF.
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Step 0. (Initialization): Pick an initial CDF F which may or may not satisfy the mean
constraint. F (·) must be discrete with support sets as described by Turnbull (1976)
and modified by Alioum and Commenges (1996).

Step 1. (E-step): Find the conditional probability with respect to F that an observation is
equal to Xi, given the censored/truncated information. This step is the same as the
E-step of Turnbull (1976) and will produce pseudo observations Xi and weights wi.

Step 2. (M-step): With the (Xi, wi) from the E-step above, find a new CDF estimate F

(or equivalently pi’s) by using formulas (A.2) and (A.3) in the Appendix. This new
CDF will satisfy the mean constraint.

Step 3. Iterate Steps 1–2 until convergence.
The convergence criterion for the iteration can be based on the values of the log-

empirical likelihood, which should increase at each iteration. When the values of the log-
empirical likelihood no longer increase, we stop the iteration.

Next we show that the solution of the EM algorithm is equivalent to the constrained
maximization of the log-likelihood. We use the same setup and notation as Turnbull (1976).

Suppose X is a random variable whose CDF F (·) is to be estimated. The observations
are pairs of sets: Ai, Bi, i = 1, . . . , n whose relation to the CDF is as follows.

Suppose independent random variables, Xi, are drawn from the conditional distribution
functions P (X ≤ t|X ∈ Bi). Here, each Bi is called a truncation set. Furthermore, Xi is
censored into the set Ai; that is, we only know that Xi ∈ Ai. We suppose the sets Ai, Bi

can be written as unions of disjoint intervals. When Xi is observed exactly, then Ai is a
single point. When Bi is the entire sample space, then there is no truncation.

The empirical (or nonparametric) likelihood pertaining to the CDF of X , based on the
censored and truncated observations (Ai, Bi), is

∏
i

PF (X ∈ Ai)
PF (X ∈ Bi)

.

See Turnbull (1976, equation (3.6)).
Turnbull (1976) and Alioum and Commenges (1996) identified the nonoverlapping

intervals, [qj , rj ], where the NPMLE of F may have positive probability masses. Pick any
point tj inside [qj , rj ] to represent the interval. For definiteness let us denote the midpoints
of those intervals by tj and the corresponding probability masses by sj , j = 1, . . . ,m.

With the probabilities sj and obviously defined indicator functions αij , βij , we can
write PF (X ∈ Ai) =

∑m
j=1 αijsj and so on, and the empirical likelihood as

∏
i

∑m
j=1 αijsj∑m
j=1 βijsj

.

We seek to maximize the empirical likelihood with respect to the probabilities sj with
an additional mean constraint

m∑
j=1

sjg(tj) = µ . (2.1)
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The EM algorithm, when convergent, will give a solution to Equations (2.2):

π∗
j (s) = sj j = 1, 2, . . .m, (2.2)

where s = (s1, . . . , sm) and

π∗
j (s) =

∑n
i=1{µij(s) + νij(s)}

M(s) + λ(g(tj) − µ)
. (2.3)

In the above equations the function g(·) and constant µ are assumed given (when the
constraint is given); λ is the solution of the following equation:

0 =
m∑

j=1

(g(tj) − µ) ×∑n
i=1{µij(s) + νij(s)}

M(s) + λ(g(tj) − µ)
. (2.4)

The quantities M(s), µij , νij are defined the same way as in Turnbull (1976); they are

M(s) =
∑

i

∑
j

(µij + νij) ,

µij = µij(s) = EsI{Xi∈[qj ,rj ]} ,

νij = EsJij ,

where Es is the expectation with respect to the probability s; Jij is the number of “ghosts”
of Xi that have values in [qj , rj ].

The “ghost” of Xi can be described as follows. Because of truncation, each observation
Xi = xi can be considered a remnant of a group, the size of which is unknown and all
(except the one observed) with X-values in Bc

i . They can be thought of as Xi’s “ghosts.”
Equations (2.3) and (2.4) are the results of Theorem A.1 in the Appendix.
We claim that the constrained maximization can be achieved by iterations based on

the self-consistent Equation (2.2). We now show the equivalence claim. To maximize the
log-likelihood under the mean constraint (2.1) and

∑
sj = 1, we proceed by the Lagrange

multiplier. Taking partial derivatives of the target function

G =
n∑

i=1


log


 m∑

j=1

αijsj


− log


 m∑

j=1

βijsj






−γ


 m∑

j=1

sj − 1


− λ


 m∑

j=1

sj(g(tj) − µ)




with respect to the sj , we get

d∗
j (s) =

n∑
i=1

{
αij∑m

k=1 αiksk
− βij∑m

k=1 βiksk

}
− γ − λ(g(tj) − µ) . (2.5)
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For s to be the (constrained) NPMLE, those partial derivatives must be zero. Multiplying
each of the partial derivatives d∗

j (s) by sj and then summing over j, we get γ = 0.
The left side of the self-consistent Equation (2.2) can then be written as

π∗
j (s) =

sj

M(s) + λ(g(tj) − µ)


d∗

j (s) + λ(g(tj) − µ) +
n∑

i=1

(
m∑

k=1

βiksk

)−1

 .

Calculations similar to those in Turnbull (1976) give

π∗
j (s) =

{
1 +

d∗
j (s)

M(s) + λ(g(tj) − µ)

}
sj .

Therefore, the self-consistent Equation (2.2) becomes{
1 +

d∗
j (s)

M(s) + λ(g(tj) − µ)

}
sj = sj .

From this set of equations we can prove (using arguments similar to those of Turnbull 1976)
the following theorem.

Theorem 1. The solution of the constrained log-likelihood equation d∗
j (s) = 0 is

equivalent to the solution of the self-consistent Equation (2.2).
The word “equivalent” in Theorem 1 means that if sj is a solution to d∗

j (s) = 0, then
it is also a solution to the equation π∗

j (s) = sj , and vice versa.
A good initial F to start the EM calculation is the NPMLE without the constraint (if

available). In the case of right-censored data, this is the Kaplan-Meier (1958) estimator. If
such an initial F is not available, as in the case of doubly censored data, a distribution with
equal probability masses on all possible jump locations tj can be used.

Remark: The convergence property of this modified EM algorithm is very similar to
that of Turnbull (1976), provided we pick the µ value inside the range of g(tj).

When there is only censoring and no truncation, the negative LELF is clearly convex
in s. With a constraint that is linear in s, it is easy to see that there is a unique maximizer,
and thus there is a unique solution to the self-consistent equations.

Remark: For two or more independent samples, the maximization of the empirical
likelihood with constraints of the type∫

g1(t)dF1(t) =
∫

g2(t)dF2(t)

can be handled similarly by the modified self-consistent/EM algorithm.

3. SOME SPECIAL CASES

This section gives some explicit formulas useful in calculating the E-step for some
common types of censored/truncated data.
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3.1 RIGHT-, LEFT-, OR DOUBLY CENSORED CASE

E-step: Given F , the weight, wj , at location tj can be computed as

n∑
i=1

EF

[
I[Xi=tj ]|Ti, δi

]
= wj .

We only need to compute the weights for those tj where either (1) tj is a jump point for
the given distribution F ; or (2) tj is an uncensored observation. In many cases (1) and (2)
coincide (e.g., the Kaplan-Meier estimator). The weights for other locations are obviously
zero. Also, when Ti is uncensored, the conditional expectation is trivial.

Suppose the ith observation, Ti, is right censored: δi = 0. The E-step above can be
computed as follows:

EF [I[Xi=tj ]|Ti, δi] =
∆F (tj)

1 − F (Ti)
for tj > Ti

and EF [·] = 0 for tj ≤ Ti.
For an uncensored observation Ti, it is obvious that EF [·] = 1 when tj = Ti and

EF [·] = 0 for any other tj .
For a left-censored observation Ti, the E-step above can be computed as follows:

EF [I[Xi=tj ]|Ti, δi] =
∆F (tj)
F (Ti)

for tj < Ti

and EF [·] = 0 for tj ≥ Ti.

3.2 LEFT-TRUNCATED AND RIGHT-CENSORED DATA

We describe in some detail the left-truncated and right-censored observation case,
because this is a commonly seen data type in practice.

For left truncated observations, there is an explicit expression for the NPMLE of the
CDF, the Lynden-Bell estimator (see Li 1995). Li (1995) studied the empirical likelihood
when the parameter is the probability F (T0) for a given T0. For left-truncated and right-
censored observations, there is also an explicit NPMLE of the CDF (Tsai, Jewell, and
Wang 1987). However, no explicit formula exists to compute the NPMLE under the mean
constraint, so we need the EM algorithm described here.

Suppose the observations we have are (Y1, T1, δ1), . . . , (Yn, Tn, δn), where the Y ’s are
the left truncation times and the T ’s are the (possibly right-censored) lifetimes. Denote by
X the lifetime before censoring/truncation. The censoring indicator δ assumes the usual
meaning that δ = 1 if T is uncensored and δ = 0 if T is right censored. Because of
truncation, for all i, we have (Ti > Yi). We assume that Y is independent of X and both
distributions are unknown.

The NPMLE of the CDF puts positive probabilities only at the locations of observed,
uncensored Ti’s. Denote those locations by tj . The log-empirical likelihood pertaining to



650 M. ZHOU

the distribution of X is (see, e.g., Tsai, Jewell, and Wang 1987)

L(p) =
∑

i:δi=1


log pi − log


 ∑

Tj>Yi

pj






+
∑

i:δi=0


log


 ∑

Tj>Ti

pj


− log


 ∑

Tj>Yi

pj




 .

E-step: Given a current estimate F (·) that has positive probabilities only at tj , we
compute the weight

wj =
n∑

i=1

EF [I[Xi=tj ]|Ti, δi] +
n∑

i=1

I[tj<Yi]∆F (tj)/PF (X > Yi) .

The above can be written more explicitly by noticing that (1) the EF part can be computed
in exactly the same way as in the example for the censored data case, and (2) the second
term is (without summation)

I[tj<Yi]∆F (tj)/PF (X > Yi) =
I[tj<Yi]pj∑
k I[tk>Yi]pk

,

where pj = ∆F (tj).

4. SIMULATIONS AND EXAMPLES OF EMPIRICAL
LIKELIHOOD RATIO COMPUTATION

4.1 COMPUTATION OF EMPIRICAL LIKELIHOOD RATIO

Once the constrained NPMLE of probabilities are computed by the EM algorithm, we
can plug them into the log-likelihood, as in (1.2) or (1.5), to get the censored/truncated
log-empirical likelihood with mean constraint easily. This in turn allows us to compute the
empirical log-likelihood ratio statistic:

−2 log R(H0) = −2 log
maxH0 L(p)

maxH0+H1 L(p)
(4.1)

= 2

[
log( max

H0+H1

L(p)) − log(max
H0

L(p))
]

= 2
[
log(L(p̃)) − log(L(p̂))

]
. (4.2)

Here, p̃ is the NPMLE of probabilities without a mean constraint; p̂ is the NPMLE of
probabilities under the mean constraint of the null hypothesis.

In some cases, there may be faster methods available to compute p̃. A case in point is
the Kaplan-Meier estimator for right-censored data. If not, we can always use Turnbull’s
(1976) EM algorithm to compute p̃.
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Figure 1. Log-likelihood for µ near maximum.

Examples with real data and simulation results are reported below to illustrate the
usefulness of the proposed EM method and also to illustrate the small to medium sam-
ple performance of the chi square approximation. The software used are the R functions
el.cen.EM() and el.ltrc.EM() from the emplik package.

4.2 CONFIDENCE INTERVAL, REAL DATA, RIGHT CENSORED

The first example concerns Veteran’s Administration lung cancer study data (e.g., avail-
able from the R package survival). We took the subset of survival times from treatment
1 and the small cell group. There are two right-censored observations. The survival times
are: 30, 384, 4, 54, 13, 123+, 97+, 153, 59, 117, 16, 151, 22, 56, 21, 18, 139, 20, 31, 52,
287, 18, 51, 122, 27, 54, 7, 63, 392, 10.

We use the EM algorithm to compute the log-empirical likelihood under the constraint
mean(F ) = µ for various values of µ. The log-empirical likelihood has a maximum when
µ = 94.7926, which is the mean computed from the Kaplan-Meier estimator.

The 95% confidence interval for the mean survival time is {µ|−2 log R(µ) < χ2
1(.95)},

which is seen here to be [61.70948, 144.912] (Figure 1) since the log-empirical likelihood
was 3.841/2 = χ2

1(0.95)/2 below the maximum value (= −93.14169) both when µ =
61.70948 and µ = 144.912. We see that the confidence interval is not symmetric around the
MLE. In general, confidence intervals obtained by inverting empirical likelihood ratio tests
are not necessarily symmetric, which can improve the coverage for skewed data compared
to the Wald type confidence intervals.

4.3 SIMULATION: RIGHT-CENSORED DATA

It is generally believed that, for smaller sample sizes, likelihood ratio/chi square based
inference is more accurate than those obtained by Wald method. The Q-Q plot (Figure
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Figure 2. A Q-Q plot for right-censored likelihood ratio.

2) from the following simulation shows that the chi-square distribution is a pretty good
approximation to the distribution of the −2 log-empirical likelihood ratio statistic for right-
censored data involving a mean parameter.

We randomly generated 5,000 right-censored samples, each of size n = 50 as in
Equation (1.1), where X ∼ exp(1), C ∼ exp(.2), and g(t) = I[t≤1] or g(t) = (1− t)I[t≤1].

The constraint is
∫ 1

0 g(t)d(1 − exp(−t)) = µ. Both plots look similar; we only show here
the one corresponding to g(t) = (1 − t)I[t≤1].

We computed 5,000 empirical likelihood ratios. Each ratio is obtained as in (4.2) by
using the Kaplan-Meier estimator’s jumps as (p̃), and (p̂) given by the modified EM method
proposed in this article. The Q-Q plot, based on 5,000 empirical likelihood ratios and χ2

1

percentiles, is shown in Figure 2. Two vertical lines were drawn at the points 3.84 and 2.71,
which are the critical values of χ2

1 with nominal levels 5% and 10%. From the Q-Q plot,
we can see that the χ2

1 approximation is pretty good because the sorted −2log-likelihood
ratios line up closely to χ2

1 percentiles. Only at the far upper tail of the distributions, the
differences are visible. This implies that, for confidence intervals with confidence levels
up to 98% or 99%, the approximate coverage probabilities are pretty close to the nominal;
when confidence levels are over 99.7%, then the approximations are not as good.

4.4 SIMULATION AND EXAMPLE: LEFT-TRUNCATED, RIGHT-CENSORED CASE

We generate left truncation times Y as shifted exponential random variables, exp(4)−
.1. We generate lifetimes X as exp(1) random variables and censoring times C as exp(.15)
random variables. The truncation probability P (Y > X) is around 13.4%. The censoring
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Figure 3. Q-Q plot of −2log-likelihood ratios vs. χ2
(1) percentiles for sample size 50.

probability P (X > C) is around 13%.
The triplets, (Y,X,C), are rejected unless Y < X and Y < C. If the triplet is not

rejected, we return Y, T = min(X,C) and δ = I[X≤C]. Fifty triplets {Y, T, δ} are
generated each time a simulation is run. The function g(t) we used is t(1 − t)I[0<t<1]. The
mean of this function is µ = (3e−1 − 1). Figure 3 shows the Q-Q plot for this simulation.
Again, we see that the chi-square distribution is a very good approximation to the distribution
of the empirical likelihood ratio. Only in the far upper tail the quality of the approximation
deteriorates.

Finally, let us look at a small dataset taken from the book of Klein and Moeschberger
(1997, tab. 1.7, p. 16). There, the survival times of female psychiatric inpatients are reported
as follows: Y =(51, 58, 55, 28, 25, 48, 47, 25, 31, 30, 33, 43, 45, 35, 36), T =(52, 59, 57,
50, 57, 59, 61, 61, 62, 67, 68, 69, 69, 70, 76), and δ =(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1
). The mean computed from the Tsai-Jewell-Wang (1987) estimate is 64.4375. The plot of
−2 log-likelihood ratio against various µ values is similar to Figure 1 and is omitted. The
−2 log-likelihood ratio has a minimum of zero at µ = 64.4375, as it should be. A 95%
confidence interval for µ includes those values for which the −2log-likelihood ratio is less
than 3.84. In this case, it is [59.5702302, 69.1899978].

5. DISCUSSION

The computational algorithm proposed in this article covers a wide variety of cen-
sored/truncated data cases as described by Turnbull (1976). It enables us to compute the
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NPMLE of the CDF under a mean type constraint. This in turn enables us to compute the
−2 log-empirical likelihood ratio in such cases. Coupled with the empirical likelihood the-
ory (Wilks theorem), the ratio can be used to draw inference about functionals of the CDF,
and we see good small to medium sample performance in the examples/simulations.

Multivariate versions of the proposed EM algorithm and Theorem 1 are obviously
possible. There, we have k constraints:

∑
i sigj(ti) = µj , j = 1, . . . , k. In fact, this is also

implemented in the emplik package as function el.cen.EM2.
Another method often used to search for a maximum is the Newton type method. For

maximizing censored/truncated empirical likelihoods, a Lagrange multiplier reduction is
often not available, and the Newton type method has to work with n − 1 variables, which
grows at the rate of sample size n. Moreover, the Newton method involves matrices of size
n by n. Inverting such matrices makes things worse. See Chen and Zhou (2001) for more
details. On the other hand, the memory requirement of the EM method is linear in n.

On a desktop PC with 3.06 GHz CPU, 512 MB RAM, we recorded the following times:

• Sample size 2,000 (25% right censored). EM: 2 seconds; Newton: 20 seconds.
• Sample size 4,000 (25% right censored). EM: 5 seconds; Newton: more than 5

minutes.
• On a notebook computer (Celeron 2.2 GHz CPU, 512 MB RAM), we tested the EM

method with even larger sample sizes:

– Sample size 10,000 (25% right censored). EM: 55 seconds.
– Sample size 20,000 (25% right censored). EM: 4 minutes.

The theory for the asymptotic properties of the constrained NPMLE and the empirical
likelihood ratio lags behind the computation. There has yet to be a theory of empirical
likelihood ratio that covers all the censored/truncated data cases described by Turnbull
(1976), but see Owen (2001), Murphy and van der Vaart (1997), and Banerjee and Wellner
(2001) for some known special cases.

APPENDIX: CONSTRAINED MAXIMIZATION OF THE
EMPIRICAL LIKELIHOOD WITH UNCENSORED, WEIGHTED

OBSERVATIONS

Suppose we have independent (uncensored, not truncated) observations X1, . . . , Xn

from distribution F (·). Associated with the observations are nonnegative weights w1, . . . ,

wn. The meaning of the weights is such that if wi = 2, then there are two observations with
value Xi, and so on. We shall allow the weights to be fractions for our applications later.

The empirical likelihood based on the weighted observations is
∏

(pi)wi , and the log-
empirical likelihood is ∑

wi log pi . (A.1)
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Theorem A.1. Suppose g(·) is a given function that satisfies maxig(Xi) > µ >

minig(Xi). The maximization of the log-empirical likelihood (A.1) with respect to the
pi and subject to the constraints∑

pi = 1 ,
∑

g(Xi)pi = µ

is given by the formula

pi =
wi∑

j wj + λ(g(Xi) − µ)
, (A.2)

where λ is the solution of the equation

∑
i

wi(g(Xi) − µ)∑
j wj + λ(g(Xi) − µ)

= 0 . (A.3)

The solution of (A.3) is unique and the pi’s given above constitute a proper probability.
A multivariate version of this theorem also holds, in which we have k constraints∑

i gj(Xi)pi = µj , j = 1, . . . , k. In this case, g, λ andµ in the above formula are understood
to be vectors of length k.

This theorem can be easily proved by using the Lagrange multiplier and much of it is
contained in the proof of Theorem 1 of Owen (1990). We omit the details.

[Received October 2002. Revised September 2004.]
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