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Abstract

The well-known Kaplan-Meier estimator is a nonparametric maximum likelihood
estimator. We calculate the semiparametric observed Fisher information for a Kaplan-
Meier integral based on n iid right censored observations. The inverse of the informa-
tion is seen equal to the variance of the Kaplan-Meier integral for large n. Observed
as well as expected semiparametric information for a Nelson-Aalen integral are also
derived. The least favorable families of sub-models for both integrals are identified.
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1 Introduction

For n iid right censored observations: (Ti, δi) i = 1, 2, · · · , n, where Ti = min(Xi, Ci),
δi = I[Xi ≤ Ci], we assume the lifetimes Xi are iid with CDF F (t) and the censoring
variable Ci is independent of Xi.

The nonparametric likelihood function for F based on the n iid right censored observa-
tions is (see for example, Kaplan and Meier 1958):

L(F ) =
∏
δi=1

∆F (ti)
∏
δi=0

[1− F (ti)] . (1)

Kaplan and Meier (1958) also showed that among all CDFs, continuous or discrete, the
one CDF that we call the Kaplan-Meier estimator maximizes the above likelihood:

1− F̂km(t) =
∏
s≤t

(
1− ∆N(s)

R(s)

)
, (2)

where N(t) =
∑n

i=1 I[Ti ≤ t, δi = 1], R(t) =
∑n

i=1 I[Ti ≥ t].

So, the Kaplan-Meier estimator is a nonparametric MLE (NPMLE). The difference
between NPMLE and the regular MLE is that the parameter here is the entire CDF (infinite
dimensional), and the regular MLEs are for finite dimensional parameters.

The (Fisher) information for an infinite dimensional parameter is difficult since the new
concept of derivatives of logL(F ) with respect to a CDF needs to be defined and the corre-
sponding theory needs to be developed. Strong math background is required. The standard
reference on this topic is Bickel, Klaassen, Ritov & Wellner (1993). A more interesting sit-
uation is to estimate a finite dimensional parameter of interest within a nonparametric
model. Usually, those models are called semiparametric models. For many examples of
semiparametric models, see Chapter 3 and 4 of Bickel, Klaassen, Ritov & Wellner (1993);
Chapter 25 of van der Vaart (1998); Chapter 4 of Kosorok (2008) and Chapter 4 and 5 of
Tsiatis (2006). The information lower bound for estimating a finite dimensional parameter,
while having an infinite dimensional nuisance parameter, is a major topic discussed in the
above books.

While the above books all discussed the expected information for large n, we shall
compute the observed information for fixed n here with the right censored data. We follow
the scheme of Stein (1956). It turns out that the observed Fisher information for a Kaplan-
Meier integral is much easier to calculate than the expected information. We obtain the
exact value of the observed information for finite n. No approximation, no limit for n.
Only the classic derivatives are used.

In parametric MLE analysis, the observed Fisher information often gives rise to a better
normal approximation for the distribution of the MLE (than using the expected informa-
tion), see Efron and Hinkley (1978). Similar phenomena also occur in other estimation
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problems, see Lindsay and Li (1997), Walker (1987), Tierney and Kadane (1986), and
Savalei (2010) among others. Therefore calculating observed information is useful even if
the expected information is available. A key difference is that the expected information is
non-random, while the observed information is data dependent and thus random.

We also identified the least favorable parametric sub-model for estimating the Kaplan-
Meier integrals (also for the Nelson-Aalen integrals). Those parametric family of distribu-
tions is very useful in a number of places: see for example DiCiccio and Romano (1990) for
calculating nonparametric resampling confidence limits. The least favorable family is also
intimately connected to the empirical likelihood analysis (Owen, 2001, Ch. 9). We shall
study these topics in other places. Roughly speaking, the least favorable family reduces
the nonparametric problem to a parametric problem.

Similar calculations are also carried out in this paper for the Nelson-Aalen integrals,
where both expected and observed Fisher information are worked out for finite sample sizes
n. In this case, the two informations are exactly equal if we replace the true CDF with the
Kaplan-Meier estimator and the true cumulative hazard with the Nelson-Aalen estimator.

2 Information for Kaplan-Meier Integrals

2.1 Information Number

One way to reduce the (infinite) dimension, or to extract a one-dimensional feature of the
infinite dimensional parameter of CDF, is to take a functional

µ =

ˆ
g(t)dF (t) ,

i.e. µ is a one-dimensional parameter. Here g(t) is a function we pick to extract the feature
we want. If g(t) = I[t ≤ 3] then the one-dimensional feature is F (3); if g(t) = t then the
feature is the mean value of F , etc.

We want to compute the observed information contained in the likelihood L(F ) at
F = F̂km, for estimating µ.

By well known theory, the observed information is related to the (negative) second
derivative of the log likelihood, i.e. we need to compute the second derivative of logL(F )
at F = F̂km. We shall compute the derivative of L(F ) with respect to µ as a composite
function as follows:

logL(F ) = logL(Fλ(µ)) ,

with Fλ and λ(µ) defined below.

Since we only need to compute the derivative at the F = F̂km, we define a parametric
subfamily of distributions (passing through F̂km):

∆Fλ(ti) = ∆F̂km(ti)[1− λf(ti)] , i = 1, · · · , n ; (3)
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where the parameter λ ∈ (−a, a) for some a > 0. We assume 0 <
∑n

i=1 f
2(ti)∆F̂km(ti) <

∞. We are to compute the derivative at λ = 0. The equation (3) says that we only look
at those F that are dominated by the Kaplan-Meier. Similar parametric sub-family of
distributions were used by Bickel, Klaassen, Ritov & Wellner (1993) Chapter 3, and van
der Vaart (1998) page 364, among others. Intuitively, λ is the magnitude of change and f
is the direction of change of Fλ from the Kaplan-Meier F̂km.

Since
∑n

i=1 ∆Fλ(ti) must be one (for all λ) as is true for all CDFs, we must have f(ti)
satisfy

n∑
i=1

f(ti)∆F̂km(ti) = 0. (4)

Next, we look at the function λ = λ(µ). Since the specific one-dimension feature we are
looking at is µ =

´
g(t)dF (t), this leads to

ˆ
g(t)[1− λf(t)]dF̂km(t) = µ .

Or, re-arrange terms and write it as a sum, we get an equation for λ

λ
n∑
i=1

g(ti)f(ti)∆F̂km(ti) =
n∑
i=1

g(ti)∆F̂km(ti)− µ .

λ =

∑n
i=1 g(ti)∆F̂km(ti)− µ∑n
i=1 g(ti)f(ti)∆F̂km(ti)

. (5)

Therefore,

∂λ

∂µ
=

[
−

n∑
i=1

g(ti)f(ti)∆F̂km(ti)

]−1

,
∂2λ

(∂µ)2
= 0 .

Next, we compute the partial derivative of u(λ) = logL(Fλ) with respect to λ. We first
substitute F in the likelihood (1) by Fλ then take the derivatives.

It is easy to check (we do not need it here, but it is reassuring) that u
′
(0) = 0. With-

out calculation, we can also explain why u
′
(0) = 0: this log likelihood u(λ) achieves its

maximum value at λ = 0 (the Kaplan-Meier), therefore the derivative at λ = 0 must be 0.

Long and tedious calculation/simplification show (see Appendix for details)

u
′′
(0)

n
= −

n∑
i=1

[f(ti)− f̄(ti)]
2[1− Ĝkm(ti−)]∆F̂km(ti) ,
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where Ĝkm is the Kaplan-Meier estimator of the censoring distribution, defined similarly
by (2) except replace N(t) by Nc(t) =

∑
I[Ti ≤ t, δi = 0].

We call the attention of the reader to the use of ‘advanced time’ f̄ here: a transformation
used by Efron & Johnstone (1990) and Akritas (2000). We also give its definition in the
Appendix.

Putting the two derivatives together, by the chain rule, the second derivative of logL(F )
with respect to µ (at λ = 0, equivalently at F̂km) is

∂2 logL(F )

(∂µ)2
|λ=0 =

−n
∑

[f − f̄ ]2[1− Ĝkm(ti−)]∆F̂km(ti)

[
∑
g(ti) f(ti)∆F̂km(ti)]2

. (6)

For further simplifications we need

Lemma 1 We have

n∑
i=1

g(ti) f(ti)∆F̂km(ti) =
n∑
i=1

[g(ti)− ḡ(ti)][f(ti)− f̄(ti)]∆F̂km(ti) . (7)

Proof: In view of (4),∑
g(ti) f(ti)∆F̂km(ti) =

∑
[g(ti)− Eg] [f(ti)− Ef ]∆F̂km(ti)

where Eg, Ef are mean with respect to the Kaplan-Meier. Now the covariance between
g and f can be written as the right hand side of (7) above using advanced times, a fact
which can be proved similar to Efron & Johnstone (1990), equation (2.5). �

Using the Lemma 1, we can write the derivative (6) as

∂2 logL(F )

(∂µ)2
|λ=0 =

−n
∑

[f(ti)− f̄(ti)]
2[1− Ĝkm(ti−)]∆F̂km(ti){∑

[g(ti)− ḡ(ti)] [f(ti)− f̄(ti)]∆F̂km(ti)
}2 . (8)

Finally by the Cauchy-Schwarz inequality (see Appendix) we find the minimum (or
infimum) over all f of the second order derivative

inf
f

− ∂2 logL(F )

(∂µ)2
|λ=0 =

n∑n
i=1

[g(ti)−ḡ(ti)]2
1−Ĝkm(ti−)

∆F̂km(ti)
. (9)

This is the “observed Fisher information” for estimating µ, at λ = 0 or F = F̂km, as
described in Stein (1956).

According to Akritas (2000), the asymptotic distribution of the Kaplan-Meier integral,´
g(t)d[F̂km(t)− F (t)], is normal with mean zero and a variance well approximated by the

inverse of the observed information above. In fact, if you replace the Kaplan-Meier in (9)
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by the true CDF and summation by integral, you get the asymptotic variance given in
Akritas (2000). This asymptotic equality shows that the Kaplan-Meier integral achieves
the information bound, and therefore is an (asymptotic) efficient estimator of µ.

In the above calculation when we use the Cauchy-Schwarz inequality to find the infimum,
it also gives an easy way to identify the f that achieves the infimum in (9). This f also
gives rise to the ‘least favorable’ subfamily of distributions via (3). For definition and
more discussion of ‘least favorable’ subfamily of distributions, see Stein (1956), Bickel,
Klaassen, Ritov and Wellner (1993), van der Vaart (1998), DiCiccio and Romano (1990),
Owen (2001), or Efron and Tibshirani (1993) section 22.7. This least favorable f satisfies

f(ti)− f̄(ti) ∝
g(ti)− ḡ(ti)

1− Ĝkm(ti−)
, (a.s. F̂km).

2.2 Information Matrix

We may extract a finite number, r, of features from a CDF with r integrals. The r (r > 1)
parameters are µ = (µ1, · · · , µr) which are defined as

(µ1, · · · , µr) =

(ˆ
g1(t)dF (t), · · · ,

ˆ
gr(t)dF (t)

)
.

We denote g(t) = (g1(t), · · · , gr(t)), and µ = (µ1, · · · , µr).
The calculation of observed information matrix is similar to the one parameter case.

We only give an outline here.

We define the r-parameter subfamily of distributions as

∆Fλ(ti) = ∆F̂km(ti)[1− λ · f(ti)] , i = 1, · · · , n . (10)

where λ = (λ1, · · · , λr) and f(t) = (f1(t), · · · , fr(t)) and the product λ · f(ti) is the inner
product

∑r
k=1 λkfk(ti).

Let us define three r × r matrices:

Σ = (σuv) =

(
n∑
i=1

[gu(ti)− ḡu(ti)][gv(ti)− ḡv(ti)]
∆F̂km(ti)

1− Ĝkm(ti−)

)
, (11)

A = (auv) =

(
n∑
i=1

[gu(ti)− ḡu(ti)][fv(ti)− f̄v(ti)]∆F̂km(ti)

)
,

B = (buv) =

(
n∑
i=1

[fu(ti)− f̄u(ti)][fv(ti)− f̄v(ti)][1− Ĝkm(ti−)]∆F̂km(ti)

)
.
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We first take the partial derivatives of logL(F ) with respect to λ and (after simplifica-
tions) get

∂2 logL(F )

∂λu∂λv
|λ=0 = −nB .

The r parameters for the subfamily of distributions are calculated as

n∑
i=1

gk(ti)[1− λ · f(ti)]∆F̂km(ti) = µk , k = 1, · · · , r.

This can be written as (recall
∑
fk(ti)∆F̂km(ti) = 0)

Aλ = τ − µ

where τ = (τ1, · · · , τr) and τk =
∑n

i=1 gk(ti)∆F̂km(ti)). Taking partial derivative in the
above equation with respect to µ, we see

∂λ

∂µ
= A−1 ,

∂2λ

(∂µ)2
= 0 .

Direct calculation (see Appendix) show the negative of the second derivative matrix of
logL(F ) with respect to µ is

n(A−1)>BA−1 .

Matrix version of the Cauchy-Schwarz inequality (see Appendix) then show

inf
(f1,··· ,fr)

n(A−1)>BA−1 = n Σ−1
. (12)

Similar to Akritas (2000), we can show the asymptotic distribution of
√
n
´
g(t)d[F̂km(t)−

F0(t)] is an r-variate normal with mean zero and a variance matrix V well approximated
by Σ in (11) (just replace the Kaplan-Meier by the true CDF in Σ, and replace the sum by
integration, you obtain V ).

We summarize the above results into the following theorem.

Theorem 1 Suppose we have n iid right censored observations (Ti, δi) as specified in
section 1. The nonparametric likelihood function for F (t), the unknown CDF of Xi, is given
by (1). Define parameters (µ1, · · · , µr) by (

´
g1(t)dF (t), · · · ,

´
gr(t)dF (t)) where gk(t) are

given functions.

Then the observed Fisher information matrix for estimating (µ1, · · · , µr) at F = F̂km is

I(µ, F̂km) = nΣ−1
,

where Σ is defined in (11), and F̂km is the Kaplan-Meier estimator.
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Furthermore, the least favorable subfamily of distributions for estimating µ is given by
(10) with the f specified by

fk(ti)− f̄k(ti) ∝
gk(ti)− ḡk(ti)
1− Ĝkm(ti−)

, i = 1, · · · , n; k = 1, · · · , r; (a.s. F̂km) .

where f̄ and ḡ are advanced times with respect to F̂km defined in Appendix. �

Remark The semiparametric expected information is more difficult, since the (exact)
expectation/variance of the Kaplan-Meier estimator etc. are not available. We will have to
resort to approximations. On the other hand, when data are non-censored, the semipara-
metric expected information can be computed.

3 Information for the Nelson-Aalen Hazard Integrals

The calculations for the information of the Nelson-Aalen hazard integrals are in fact easier
since the jumps of a discrete cumulative hazard do not have to sum to one, and counting
process martingale results are readily available. For the observed information, the calcu-
lation is carried out in subsection 3.1. We also compute in subsection 3.2 the expected
information for the hazard integrals, defined as (infimum over submodels of) the expec-
tation of the square of the first derivative of the log likelihood. This is the definition of
semiparametric information bound used by most books on semiparametric estimation. We
call it the expected information here.

3.1 Observed information

Given the same n iid right censored data as in section 1, the infinite dimensional param-
eter here, Λ(t), is the unknown cumulative hazard function of the lifetimes Xi. Finite
dimensional feature of the Λ(t) is defined by

ˆ
g(t)dΛ(t) = θ (13)

where we assume the function g is such that the integral is finite.

The Poisson log likelihood for Λ(t), based on the n iid right censored data is (see for
example Zhou (2016)):

logL1(Λ) =
n∑
i=1

(
∆N(ti) log ∆Λ(ti)−

n∑
j=1

∆Λ(tj)I[tj ≤ ti]

)
. (14)
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The NPMLE of Λ(t) here is the Nelson-Aalen estimator,

Λ̂na(t) =
∑
ti≤t

∆N(ti)

R(ti)
.

We define the parametric subfamily of cumulative hazard functions by

∆Λλ(ti) = ∆Λ̂na(ti)[1− λh(ti)] . (15)

For this subfamily of cumulative hazard functions, the parameter θ is then

θ =
n∑
i=1

g(ti)∆Λ̂na(ti)− λ
n∑
i=1

g(ti)h(ti)∆Λ̂na(ti) .

From the above equation, we have

∂λ

∂θ
=

{
−

n∑
i=1

g(ti)h(ti)∆Λ̂na(ti)

}−1

,
∂2λ

(∂θ)2
= 0 .

To calculate the derivative of logL(Λ) with respect to λ, at λ = 0, we first write out
the log likelihood with the parametric subfamily of hazard functions specified above. Then
direct calculation show

∂2 logL1(Λ)

(∂λ)2
|λ=0 = −

n∑
i=1

h2(ti)∆N(ti) = −
n∑
i=1

h2(ti)R(ti)∆Λ̂na(ti) .

By the chain rule, the second order derivative of logL1(Λ) with respect to θ, at Λ = Λ̂na

is

∂2 logL1(Λ)

(∂θ)2
|λ=0 =

−
∑n

i=1 h
2(ti)R(ti)∆Λ̂na(ti)[∑n

i=1 g(ti)h(ti)∆Λ̂na(ti)
]2 .

Finally, using the Cauchy-Schwarz inequality, we have

inf
h
− ∂

2 logL1(Λ)

(∂θ)2
|λ=0 =

1∑n
i=1

g2(ti)∆Λ̂na(ti)
R(ti)

. (16)

We shall call this the (semiparametric) observed information (for parameter θ at Λ̂na).

It is seen that the estimator of parameter θ based on the Nelson-Aalen, θ̂ =
´
g(t)dΛ̂na(t),

has a variance well approximated by the inverse of the observed information derived above
(see for example Klein (1991)).
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The least favorable subfamily of distributions for the estimation problem at hand is
given by (15) with an h satisfy

h(ti) ∝
g(ti)

R(ti)
, (a.s. Λ̂na). (17)

Theorem 2 Suppose we have n iid right censored observations (Ti, δi) as specified in
section 1. The nonparametric (Poisson version of) log likelihood based on the right censored
observations for the unknown cumulative hazard function Λ(t) (of lifetimes Xi) is given as
in (14).

Define a parameter θ by θ =
´
g(t)dΛ(t) for a given function g. Then the observed

Fisher information contained in the log likelihood (14) for estimating θ, at Λ = Λ̂na is

I(θ, Λ̂na) =

{
n∑
i=1

g2(ti)∆Λ̂na(ti)

R(ti)

}−1

,

where Λ̂na(t) is the Nelson-Aalen estimator and R(t) is defined in section 1.

The least favorable subfamily of cumulative hazard functions for estimating θ is given
by (15) with h satisfy (17).

A multi-parameter version of this theorem is straightforward. We omit to save space.
�

3.2 Expected information

As a comparison we will compute the expected semiparametric information in logL(Λ) for
estimating θ =

´
g(t)dΛ(t).

Assume the true model (or true cumulative hazard function) Λ0(t) is continuous, and
define a submodel by

dΛη(t) = dΛ0(t)[1− ηh(t)] . (18)

We recall the log likelihood for right censored data is given in (14). However, here we
assumed the true model is continuous so the log likelihood is

logL2(Λ) =
n∑
i=1

∆N(ti) log ∆Λ(ti)−
n∑
i=1

Λ(ti) . (19)

The first derivative of logL2(Λη) with respect to η at η = 0 is

∂

∂η
logL2(Λη)|η=0 = −

n∑
i=1

h(ti)∆N(ti) +
n∑
i=1

ˆ ti

0

h(u)dΛ0(u)
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Exchange the order of summation and integral in the second term on the right, we have

= −
ˆ ∞

0

h(t)dN(t) +

ˆ ∞
0

R(u)h(u)dΛ0(u)

= −
(ˆ ∞

0

h(t)d

[
N(t)−

ˆ t

0

R(u)dΛ0(u)

])
.

Notice the last expression is a (counting process) martingale evaluated at infinity. The
variance or second moment of it can be computed by first compute the predictive variation
process of the martingale, then taking an expectation of the predictive variation. Therefore
the second moment of the above is

E

ˆ ∞
0

h2(t)R(t)dΛ0(t) =

ˆ ∞
0

h2(t)n[1− F0(t)][1−G0(t−)]dΛ0(t) .

It is easy to see that the derivative of

∂η

∂θ
=

−1´
g(t)h(t)dΛ0(t)

.

Combine the two derivatives using chain rule, we obtain the (first) derivative of logL2 with
respect to θ.

The expected information is defined (see for example Bickel, Klaassen, Ritov, & Wellner
(1993)) as the infimum over all sub-models of the second moment of the first derivative of
log likelihood with respect to θ. In view of the above calculations, we have

Ie(θ,Λ0) = inf
h

´∞
0
h2(t)n[1− F0(t)][1−G0(t−)]dΛ0(t)[´∞

0
g(t)h(t)dΛ0(t)

]2 =

[ˆ ∞
0

g2(t)dΛ0(t)

n(1− F0(t))(1−G0(t−))

]−1

where the last equality is due to Cauchy-Schwarz inequality.

Therefore the expected information is the right hand side of above. And the least
favorable subfamily is given by (18) with

h(t) ∝ g(t)

n(1− F0(t))(1−G0(t−))
, (a.s. Λ0) . (20)

Theorem 3 Suppose we have n iid right censored observations (Ti, δi) as specified in
section 1. Assume the true cumulative hazard function Λ0(t) of lifetimes Xi is continu-
ous. The nonparametric (Poisson version of) log likelihood based on the right censored
observations for a cumulative hazard function Λ(t) is given in (19).
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Define a parameter θ by θ =
´
g(t)dΛ(t) for a given function g. Then the semiparametric

expected Fisher information contained in the log likelihood (19) for estimating θ, at true
model Λ0 is

Ie(θ,Λ0) =

{ˆ
g2(t)dΛ0(t)

n(1− F0(t))(1−G0(t−))

}−1

,

where F0(t) is the true lifetime distribution, G0(t) is the true censoring distribution.

The least favorable subfamily of cumulative hazard functions for estimating θ is given
by (18) with h satisfy (20).

A multi-parameter version of this theorem is straightforward. �

Compare the observed and expected information, we see that the observed information
is exactly equal to the expected information if we replace the unknown Λ0(t) by Λ̂na(t),
F0(t) by F̂km(t) and G0(t) by Ĝkm(t) (recall [1− F̂km(t)][1− Ĝkm(t)] = R(t)/n). A similar
relation between the two least favorable subfamilies also hold.
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4 Appendix.

Definition: (Advanced times) For any function g(s) and CDF F (s), the advanced time
transform ḡ(t) is

ḡ(s) =

´
(s,∞)

g(x)dF (x)

1− F (s)
. (21)

Actually, we should probably write it as ḡF (s) instead of ḡ(s) since the definition uses
F .

What we use in this paper, is for F = F̂km. The references of the advanced time are
Efron and Johnstone (1990), Akritas (2000).
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Lemma 2 (Variance identity with advanced time) We have, for any g and any CDF Fˆ
[g(t)− Eg]2dF (t) =

ˆ
[g(t)− ḡ(t)]2dF (t) ,

where Eg =
´
g(t)dF (t).

Proof: See Efron and Johnstone (1990) equation (2.5).

Lemma 3 Integral version of the Cauchy-schwarz inequality:
ˆ

Ω

ξ2(x)w2(x)dv

ˆ
Ω

η2(x)

w2(x)
dv ≥

[ˆ
Ω

ξ(x)η(x)dv

]2

here dv is a measure on Ω and w 6= 0. The maximum of right hand side is achieved if and
only if (aside from a multiplicative constant) ξw = η/w (a.s. dv). It is easy to check, when
this happens we have the equality holds.

Lemma 4 (Matrix Cauchy-Schwarz Inequality) For matrices A, B and Σ defined in
section 2, we have

(A−1)>BA−1 ≥ Σ−1

where ≥means the matrix inequality for positive definite matrices. The equality is achieved
when, for k = 1, · · · , r

fk(t)− f̄k(t) =
gk(t)− ḡk(t)
1− Ĝkm(t−)

, (a.s. F̂km) .

See Tripathi (1999) for a proof of the matrix Cauchy-Schwarz inequality. �

Next we calculate the second derivative. We give the calculation for a single parameter,
r parameter case is similar (and may be found in Zhou (2016)). Substitute F = Fλ into
the log empirical likelihood, we have

logL(Fλ) =
∑
δi=1

log ∆F̂km(ti)[1− λf(ti)] +
∑
δi=0

log

∑
sj>ti

∆F̂km(sj)[1− λf(sj)]

 .

The second derivative of u(λ) = logL(Fλ) at λ = 0 can be calculated

− u
′′
(0)

n
=

n∑
i=1

f 2(ti)
δi
n

+
n∑
i=1

1− δi
n

(∑
tj>ti

f(tj)∆F̂km(tj)
)2

[1− F̂km(ti)]2
.

Leave the second sum on the right hand side unchanged and apply the self-consistency
identity (Lemma 27 of Zhou (2016)) to the first sum on the right hand side, we have

=
n∑
i=1

f 2(ti)∆F̂km(ti)−
n∑
i=1

1− δi
n

∑
tj>ti

f 2(tj)∆F̂km(tj)

1− F̂km(ti)
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+
n∑
i=1

1− δi
n

(∑
tj>ti

f(tj)∆F̂km(tj)
)2

[1− F̂km(ti)]2
.

The two sums with 1−δi can be combined into one sum and the terms for each i become
the variance of f with respect to the (conditional) distributions: Pi = ∆F̂km(tj)/[1 −
F̂km(ti)], tj > ti:

=
n∑
i=1

f 2(ti)∆F̂km(ti)−
n∑
i=1

1− δi
n

∑
tj>ti

[f(tj)− Eif ]
2

∆F̂km(tj)

1− F̂km(ti)

where Ei denote the expectation with respect to the conditional distribution Pi. Notice
that Eif = f̄(tj), where the advanced time is defined using the Kaplan-Meier.

The first sum above can also be written as a variance (with respect to the Kaplan-Meier),
since

∑
f(ti)∆F̂km(ti) = 0. From here, we use the advanced time identity to re-write the

variances and get

=
n∑
i=1

[
f(ti)− f̄(ti)

]2
∆F̂km(ti)−

n∑
i=1

1− δi
n

∑
tj>ti

[
f(tj)− f̄(tj)

]2
∆F̂km(tj)

1− F̂km(ti)
.

We then use the self-consistency identity for the Kaplan-Meier again to reduce the above
to

=
n∑
i=1

[
f(ti)− f̄(ti)

]2 δi
n
.

The self-consistency identity can be found in Zhou (2016) Lemma 27. The final step is
using the identity (see bottom of page 72, Zhou (2016))

∆F̂km(ti) =
δi

n(1− Ĝkm(ti−))

to get

=
n∑
i=1

[
f(ti)− f̄(ti)

]2 [
1− Ĝkm(ti−)

]
∆F̂km(ti) .

�
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