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Summary. Since the pioneering work of Thomas and Grunkemeier (1975) and
Owen (1988), the empirical likelihood has been developed as a powerful nonparamet-
ric inference approach and become popular in statistical literature. There are many
applications of empirical likelihood in survival analysis. In this paper, we present an
overview of some recent developments of the empirical likelihood for survival data.
We will focus our attentions on the two regression models: the Cox proportional
hazards model and the accelerated failure time model.
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1 Introduction

Empirical likelihood (EL) was proposed by Thomas and Grunkemeier
(1975) in order to obtain better confidence intervals involving the Kaplan-
Meier estimator in survival analysis. Based on the idea of Thomas and Grunk-
emeier, Owen (1988) established a general framework of EL for nonparametric
inference. Since then, the EL method has become popular in the statistical
literature. EL has many desirable properties. For instance, the EL based con-
fidence interval is range preserving and transform respecting. There are many
recent works of EL for survival analysis. These works have demonstrated the
power of EL approach for analyzing censored data. Empirical likelihood has
many nice properties, one of which is its ability to carry out a hypothesis
testing and construct confidence intervals without the need of estimating the
variance – because the EL ratio do not involve the unknown variances and the
limiting distribution of EL is pivotal (chi square). This advantage of the EL
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method has been appreciated particularly in the survival analysis, since those
variances can be very difficult to estimate, especially with censored data in
survival analysis. Because of this difficulty, many estimation procedures saw
limited action in the application. EL therefore can provide a way to circumvent
the complicated variances and make many inference procedures practical.

Owen (1991) have investigated the use of EL in the regression models and
obtained parallel results to the EL inference for the mean. Unfortunately his
results are for the uncensored data only and the generalization to handle cen-
sored data is nontrivial. Thus, many authors have worked on EL for survival
data. Li (1995) demonstrated that the likelihood ratio used by Thomas and
Grunkemeier (1975) is a “genuine” nonparametric likelihood ratio. That is, it
can be derived by considering the parameter space of all survival functions.
This property is not shared by many existing EL. Li, Qin and Tiwari (1997) de-
rived likelihood ratio-based confidence intervals for survival probabilities and
for the truncation proportion under statistical setting in which the trunca-
tion distribution is either known or belong to a parametric family. Hollander,
McKeague and Yang (1997) constructed simultaneous confidence bands for
survival probability based on right-censored data using EL. Pan and Zhou
(1999) illustrated the use of a particular kind of one-parameter sub-family of
distribution in the analysis of EL. Einmahl and McKeague (1999) constructed
simultaneous confidence tubes for multiple quantile plots based on multiple
independent samples using the EL approach. Wang and Jing (2001) investi-
gated how to apply the EL method to a class of functional of survival function
in the presence of censoring by using an adjusted EL. Pan and Zhou (2002)
studied the EL ratios for right censored data and with parameters that are
linear functionals of the cumulative hazard function. Li and van Keilegom
(2002) constructed confidence intervals and bands for the conditional sur-
vival and quantile functions using an EL ratio approach. McKeague and Zhao
(2002) derived a simultaneous confidence band for the ratio of two survival
functions based on independent right-censored data. Chen and Zhou (2003)
extended the self consistent algorithm (Turnbull, 1974) to include a constraint
on the nonparametric maximum likelihood estimator of the distribution func-
tion with doubly censored data. They further show how to construct confi-
dence intervals and test hypothesis based on the nonparametric maximum
likelihood estimator via the EL ratio.

The EL ratio has also been used to construct confidence intervals for other
parameters or functionals of population in addition to survival probability. For
instance, Ren (2001) used weighted EL ratio to derive confidence intervals for
the mean with censored data. Adimari (1997) suggested a simple way to ob-
tain EL type confidence intervals for the mean under random censorship. Li,
Hollander, McKeague and Yang (1996) derived confidence bands for quan-
tile functions using the EL ratio approach. The EL method has also been
applied for linear regression with censored data (Qin and Jing, 2001, Li and
Wang, 2003, Qin and Tsao, 2003). Furthermore, the EL method has been
adapted for semiparametric regression models, including partial linear models



Empirical Likelihood in Survival Analysis 3

(Leblanc and Crowley, 1995, Shen, Shi and Wong, 1999, Qin and Jing, 2001,
Lu, Chen and Gan, 2002, Wang and Li, 2002). Naiknimbalkar and Rajarshi
(1997) proposed the EL ratio test for equality of k-medians in censored data.
Cheb, Leung and Qin (2003) extend the EL method for censored data with
surrogate endpoints.

This paper is organized as follows. In Section 2, we introduce in detail
the EL results for mean with the right censored data, while in Section 3 we
discuss the EL results for hazard with the right censored data. Section 4
discuss computation issue for the censored EL. The EL results for the Cox
proportional hazards regression model is studied in Section 5. Section 6 present
the EL method for the accelerated failure time models. Finally Section 7 gives
a brief discussion on the EL results with other types of censored data.

2 Empirical Likelihood for the mean

The mean is referred to as all the statistics that can be defined by∫
g(t, θ)dF (t) = K ; (1)

where F is the unknown cumulative distribution function (CDF), g is a given
function. Either K is a known constant then θ is an implicit parameter (eg.
quantile); or θ is a known constant then K is a parameter (eg. mean, proba-
bility).

Suppose that X1, X2, · · · , Xn are independent and identically distributed
lifetimes with CDF F (t) = P (Xi ≤ t). Let C1, C2, · · · , Cn be censoring times
with CDF G(t) = P (Ci ≤ t). Further assume that the life times and the
censoring times are independent. Due to censoring, we observe only

Ti = min(Xi, Ci), δi = I[Xi≤Ci]. (2)

The EL of the censored data pertaining to F is

EL(F ) =
n∏

i=1

[∆F (Ti)]δi [1− F (Ti)]1−δi , (3)

where ∆F (s) = F (s+)− F (s−).
It is well known that among all the cumulative distribution functions,

the Kaplan-Meier (1958) estimator maximizes (3). Let us denote the Kaplan-
Meier estimator by F̂n(t). The maximization of the censored EL under an
extra constraint (1) do not in general have an explicit expression. But we
have the following results.

Theorem 1. Suppose the true distribution of lifetimes satisfies the constraint
(1) with the given g, θ and K. Assume also the asymptotic variance of√

n
∫

g(t, θ)dF̂n(t) is positive and finite. Then, as n →∞



4 Gang Li, Runze Li, and Mai Zhou

−2 log
supF EL(F )

EL(F̂n)
D−→ χ2

(1) , (4)

where the sup is taken over all the CDFs that satisfy (1) and F � F̂n.

The proof of Theorem 1 can be found in Murphy and van der Vaart (1997)
or Pan and Zhou (1999).

Counting process martingale techniques now become a standard tool in the
literature of survival analysis. Given the censored data (2), it is well known
that we can define a filtration Ft such that

Mn(t) =
F̂n(t)− F (t)

1− F (t)

is a (local) martingale with respect to the filtration Ft, see Fleming and Har-
rington (1991) for details. It is also well known that under mild regularity
conditions

√
nMn(t) converges weakly to a time changed Brownian motion.

To extend the EL ratio theorem for regression models (e.g. the Cox model
and the accelerated failure time model), in which the mean function used in
defining the parameter, g(t), is random but predictable with respect to Ft,
we need to impose the following two conditions on gn(t):

(i) gn(t) are predictable with respect to Ft and gn(t) P−→ g(t) as n →∞.
(ii)

√
n

∫∞
−∞{gn(t)[1−FX(t)]+

∫ t

−∞ gn(s)dFX(s)}dMn(t) converges in distri-
bution to a zero mean normal random variable with a finite and non-zero
variance.

It is worth noting that the integrand inside the curly bracket in (ii) is
predictable. If we put a variable upper limit in the outside integration in
(ii), then it is also a martingale. It is not difficult to give a set of sufficient
conditions that will imply asymptotic normality. Usually a Lindeberg type
condition is needed.

Theorem 2. Suppose gn(t) is a random function but satisfies the above two
conditions and assume that for each n, we have∫ ∞

−∞
gn(t)dFX(t) = 0 , (5)

then

−2 log
supF EL(F )

EL(F̂n)
D−→ χ2

(1)

where the sup in the numerator EL is taken over those F that F � F̂n and
satisfy the constraint ∫ ∞

−∞
gn(t)dF (t) = 0 . (6)
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The proof of Theorem 2 is given in Zhou and Li (2004). In Theorem 2, it
is assumed that the true distribution of Xi satisfies (5). However, the Kaplan-
Meier estimator may not satisfy this condition. Generalizations of the above
two Theorems for multiple constraints of the type similar to (1) or (6) are
seen to hold, but a formal proof is tedious and not available in the published
works. The limiting distribution there will be χ2

(q).

3 Empirical Likelihood for the hazard

Hazard function or risk function is a quantity often of interest in survival
analysis, and it is often more convenient to model the survival data in terms
of hazard function. For a random variable X with cumulative distribution
function F (t), define its cumulative hazard function to be

H(t) =
∫

(−∞,t]

dF (s)
1− F (s−)

.

Given the censored data (Ti, δi) as in (2), one natural way to define the
EL in terms of hazard is:

EL(H) =
n∏

i=1

[∆H(Ti)]δi exp(−H(Ti)). (7)

It can be easily verified that the maximization of the EL(H) is obtained
when the hazard is the Nelson-Aalen estimator, denoted by Ĥn(t). The statis-
tics of interest is defined by∫

gn(t, θ)dH(t) = K, (8)

where the meaning of the parameter is similar to the (1) above, except the
integration is now with respect to H, and the g function is stochastic.

Theorem 3. Suppose gn(t) is a sequence of predictable functions with respect
to the filtration Ft, and gn

P−→ g(t) with

0 <

∫
|g(x)|mdH(x)

(1− FX(x))(1−G(x))
< ∞, m = 1, 2.

If the true underlying cumulative hazard function satisfies the condition (8)
with given gn, θ and K, then we have

−2 log
supH EL(H)

EL(Ĥn)
D−→ χ2

(1) as n →∞ ,

where the sup is taken over those H that satisfy (8) and H � Ĥn.
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One nice feature here is that we can use stochastic functions to define the
statistics, i.e. g(t) = gn(t), as long as gn(t) is predictable with respect to Ft.
See Pan and Zhou (2001). For example gn(t) = size of risk set at time t, will
produce a statistic corresponding to the one sample log-rank test, etc.

Multivariate version of the Theorem 3 can similarly be obtained with a
limiting distribution of χ2

(q). The q parameters are defined through q equations
similar to (8) with different g, θ and K.

4 Computation of the censored Empirical Likelihood

The computation of the EL ratios can sometimes be reduced by the Lagrange
multiplier method to the dual problem. When it does, the computation of EL
is relatively easy, and is equivalent to the problem of finding the root of q
nonlinear but monotone equations with q unknowns (q being the degrees of
freedom in the limiting chi square distribution). But more often than not the
censored EL problem cannot be simplified by the Lagrange multiplier. A case
in point is the right censored data with a mean constraint. No reduction to
the dual problem is available there.

When the maximization of the censored empirical likelihood cannot be
simplified by the Lagrange multiplier, alternative methods are available. We
introduce two here.

Sequential quadratic programming (SQP) is a general optimization pro-
cedure and a lot of related literature and software are available from the
optimization field. It repeatedly approximates the target function locally by a
quadratic function. SQP can be used to find the maximum of the censored EL
under a (linear) constraint and the constrained NPMLE. This in turn enables
us to obtain the censored empirical likelihood ratio. The drawback is that
without the Lagrange multiplier reduction, the memory and computation re-
quirement increases dramatically with sample size. It needs to invert matrices
of size n × n. With today’s computing hardware, SQP works well for small
to medium sample sizes. In our own experience, it is quite fast for samples of
size under 1000, but for larger samples sizes difficulty may rise.

EM algorithm has long been used to compute the NPMLE for censored
data. Turnbull (1976) showed how to find NPMLE with arbitrary censored,
grouped or truncated data. Zhou (2002) generalized the Turnbull’s EM al-
gorithm to obtain the maximum of the censored empirical likelihood under
mean constraints, and thus the censored empirical likelihood ratio can be com-
puted. Compare to the SQP, the generalized EM algorithm can handle much
larger sample sizes, up to 10,000 and beyond. The memory requirement of the
generalized EM algorithm increases linearly with sample size. The computa-
tion time is comparable to the sum of two computation problems: the same
EL problem but with uncensored data (which has a Lagrange multiplier dual
reduction), and the Turnbull’s EM for censored data NPMLE.
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Many EL papers include examples and simulation results and thus various
software are developed. There are two sources of publicly available software
for EL: there are Splus codes and Matlab code on the EL web site maintained
by Owen but it cannot handle censored data. And there is a package emplik
for the statistical software R (Gentalman and Ihaka, 1996) written by Mai
Zhou, available from CRAN. This package includes several functions that can
handle EL computations for right censored data, left censored data, doubly
censored data, and right censored and left truncated data.

The package emplik also includes functions for computing EL in the re-
gression models discussed in section six. No special code is needed to compute
EL in the Cox proportional hazards model, since the EL coincide with the
partial likelihood, and many software are available to compute this.

5 Cox proportional hazards regression model

For survival data, the most popular model is the Cox model. It is known
for some time that the partial likelihood ratio of Cox (1972, 1975) can be
interpreted also as the (profile) empirical likelihood ratio. See Pan (1997),
Murphy and van der Vaart (2000).

Let Xi, i = 1, · · · , n be independent lifetimes and zi, i = 1, · · · , n be its
associated covariate. The Cox model assumes that

h(t|zi) = h0(t) exp(βzi),

where h0(t) is the unspecified baseline hazard function, β is a parameter.
The contribution to the empirical likelihood function from the ith obser-

vation, (Ti, δi) is
(∆Hi(Ti))δi exp{−Hi(Ti)},

where Hi(t) = H0(t) exp(ziβ), by the model assumption of Cox model. The
empirical likelihood function is then the product of the above over i:

ELc(H0, β) =
n∏

i=1

[∆H0(Ti) exp(ziβ)]δi exp{−H0(Ti) exp(ziβ)} .

It can be verified that for any given β the ELc is maximized at the so called
Breslow estimator, H0 = Ĥβ

n . Also, by definition, the maximum of ELc(Ĥβ
n , β)

with respect to β is obtained at the Cox partial likelihood estimator of the
regression parameter. Let us denote the partial likelihood estimator of Cox by
β̂c.

Theorem 4. Under conditions that will guarantee the asymptotic normality
of the Cox maximum partial likelihood estimator as in Andersen and Gill
(1991), we have the following empirical likelihood ratio result:
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−2 log
ELc(Ĥβ0

n , β0)
sup

{β, H0}
ELc(H0, β)

= I(ξ)(β0 − β̂c)2 , (9)

where I(·) is the information matrix as define in Andersen and Gill(1991), ξ

is between β0 and β̂c, and the sup in the denominator is over all β and hazard
H0 � Ĥn. It then follows easily that (9) D−→ χ2

(1) as n →∞.

The proof of Theorem 4 was given in Pan (1997). Zhou (2003) further
studied the EL inference of Cox model along the lines of the above discussion.
He obtained the Wilks theorem of the EL for estimating/testing β when some
partial information for the baseline hazard is available. The (maximum EL)
estimator of β is more efficient than β̂c due to the extra information on the
baseline hazard.

6 Accelerated Failure Time model

The semiparametric accelerated failure time (AFT) model basically is a linear
regression model where the responses are the logarithm of the survival times
and the error term distribution is unspecified. It provides a useful alternative
model to the popular Cox proportional hazards model for analyzing censored
survival data. See Wei (1992). Sometimes the AFT models are seen to be even
more natural than the Cox model, see Reid (1994).

For simplicity and with a slight abuse of notation, we denote Xi to be the
logarithm of the lifetimes. Suppose

Xi = βtzi + εi i = 1, . . . , n;

where εi is independent random error, β is the regression parameter to be
estimated and zi consists of covariates. Let Ci be the censoring times, and
assume that Ci and Xi are independent. Due to censoring, we observe only

Ti = min(Xi, Ci); δi = I[Xi≤Ci]; zi, i = 1, . . . , n. (10)

For any candidate, b, of estimator of β, we define

ei(b) = Ti − btzi .

When b = β, the ei(β) are the censored εi.
Two different approaches of the EL analysis of the censored data AFT

model are available in the literature. The first approach is characterized by
its definition of the EL as

EL(AFT ) =
n∏

i=1

pi . (11)
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However, this is a bona fide EL only for iid uncensored data. Similar to Owen
(1991), this EL(AFT ) is then coupled with the least squares type estimating
equations

n∑
i=1

zi(T ∗i − βtzi) = 0

where T ∗i is defined by one of the two approaches below.
Synthetic data approach:

T ∗i =
δiTi

1−G(Ti)
;

or the Buckley-James approach:

T ∗i = δiTi + (1− δi)E(Xi|Ti, β) .

Both definition of T ∗i are based on the observation that E(T ∗i ) = E(Xi).
Unfortunately, the censoring distribution function G in the synthetic data
approach is unknown and is typically replaced by a Kaplan-Meier type esti-
mator. In the Buckley-James approach the conditional expectation depends
on the unknown error distribution and also need to be estimated. These sub-
stitution, however, makes the T ∗i dependent on each other and careful analysis
show that the log EL(AFT) ratio has a limiting distribution characterized by
linear combinations of chi squares, with the coefficients need to be estimated.
See Qin and Jing (2001) and Li and Wang (2003) for details.

The second approach of EL for the censored AFT model defines the EL as

EL(error) =
n∏

i=1

pδi
i [1−

∑
ej≤ei

pj ]1−δi . (12)

This EL may be viewed as the censored EL for the iid errors in the AFT model.
In our opinion, the EL should reflect the censoring and thus this definition of
EL is more natural.

Zhou and Li (2004) first note that the least squares estimation equation
with the Buckley-James approach can be written as

0 =
∑

i

δiei(b)

zi +
∑

k<i, δk=0

zk
∆F̂n(ei)

1− F̂n(ek)

 (13)

where F̂n is the Kaplan-Meier estimator computed from (ei, δi).
They then propose to use the estimation equations

0 =
∑

i

ei(b)

zi +
∑

k<i, δk=0

zk
∆F̂n(ei)

1− F̂n(ek)

n∆F̂n(ei)
δipi (14)

with the EL(error) defined above.
With the aid of Theorem 2, Zhou and Li proved the following theorem.
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Theorem 5. Suppose that in the censored AFT model εi are iid with a finite
second moment. Under mild regularity conditions on the censoring, we have,
as n →∞

−2 log
supEL(error)
supEL(error)

D−→ χ2
(1) ,

where the sup in the numerator is taken over b = β and all probabilities pi

that satisfy the estimating equations (14); the sup in the denominator is taken
over b = Buckley-James estimator and all probabilities pi.

A multivariate version of this theorem obviously also holds. Simulation
study also confirms this. For details please see Zhou and Li (2004). The M-
estimator of β for the censored AFT model is also discussed there.

7 Other Applications

Empirical likelihood method is applicable to many other types of censored
data. But due to technical difficulties, fewer results are available. Li (1996)
studied the EL with left truncated data. Similar results for the left truncated
and right censored data should also hold. Murphy and Van der Vaart (1997)
describe a general framework in which one possible way of studying the EL is
illustrated. In particular, they showed that for doubly censored data, where
the lifetimes are subject to censoring from above and below, EL results similar
to Theorem 1 also hold. Huang (1996) studied the current status data, also
known as case one interval censoring. He demonstrated how to use EL in
a proportional hazards model where the responses are current status data,
and obtained the Wilks theorem for the EL ratio for testing the regression
parameters.
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