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Abstract

In this paper we give a proof of the Wilks theorem for the empirical likelihood ratio test

for the right censored data, when the hypothesis are formulated in terms of p estimating

equations or mean functions. In particular we show that the empirical likelihood ratio test

statistic is equal to a quadratic form similar to a Hotelling’s T 2 statistic, plus a small error.

The least favorable distribution is given explicitly in terms of advanced time transformation.

Keywords Likelihood ratio test; Chi square distribution; Right censored data; Multiple

constraints.

1 Introduction

Empirical likelihood (EL) is a recently developed nonparametric statistical inference method

similar to the parametric likelihood ratio test. Owen’s 2001 book contains many important

results. Specifically, Owen (1988) was the first paper to proof rigorously the asymptotic chi

square distribution for the empirical likelihood ratio when there is a single parameter of mean

type. Owen (1990) dealt with multiple parameters setting.

However, for right censored data, less results are available for empirical likelihoods. Thomas

and Grunkemier (1975) proposed to use empirical likelihood for a single parameter of surviving

probability (Kaplan-Meier estimator), and this is the first time where empirical likelihood was

proposed as a better nonparametric inference method for construct confidence intervals. Li

(1995), Murphy (1995) made the arguments in Thomas and Grunkemier rigorous.
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When dealing with a single parameter of mean, and doubly censored data, Murphy and

Van der Vaart (1997) contains a proof of asymptotic chi square distribution for the (censored)

empirical likelihood ratio. But the conditions imposed, like boundedness, was often too restric-

tive in practice. Furthermore, we are not aware of a Wilks theorem for empirical likelihood

dealing with multiple constraints of mean type for right censored data. These two points are

precisely what the current paper try to provide.

In the analysis of (multiple) linear models, least squares type methods leads to the so called

normal equations. If the linear model have p covariates, then we end up with p simultaneous

estimating equations. To apply the EL techniques there, we need a Wilks theorem with

multiple (p) parameters. Thus our result is needed in the EL analysis of the censored data

regression models (AFT models), where typically multiple estimating equations of mean type,

with terms that are not bounded, are concerned. (See for example Zhou and Li 2008, Zhou,

Kim and Bathke 2012) Another example where Wilks theorem for EL is useful is in the testing

concern the mean residual lifetimes, (Zhou and Jeong 2011), where the terms are again not

bounded.

Some other existing work on censored data EL include: EL for the equality of k medians

based on k-samples, see Naiknimbalkar and Rajarshi (1997); EL for the weighted hazards, see

Pan and Zhou (2002). Li, Li and Zhou (2005) provides a review of EL results in survival

analysis.

We end this section by introducing notation and the basic setup of this paper. The main

theorem of this paper is in section 2. Some tedious calculations are put in the appendix.

Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables denoting the lifetimes

with a continuous distribution function F0. Independent of the lifetimes, there are censoring

times C1, C2, . . . , Cn which are i.i.d. with a distribution G0. Only the censored observations,

(Ti, δi), are available to us:

Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci] for i = 1, 2, . . . , n.

The empirical likelihood of the censored data in terms of distribution (see for example
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Owen 2001 (6.9)) is defined as

EL(F ) =

n∏
i=1

[∆F (Ti))]
δi [1− F (Ti)]

1−δi

=

n∏
i=1

[∆F (Ti))]
δi{

∑
j:Tj>Ti

∆F (Tj)}1−δi

where ∆F (t) = F (t+)−F (t−) is the jump of F at t. The second line above assumes a discrete

F (·). Let wi = ∆F (Ti) for i = 1, 2, . . . , n then the likelihood at this F can be written in term

of the jumps

EL =
n∏
i=1

[wi]
δi{

n∑
j=1

wjI[Tj > Ti]}1−δi ,

and the log likelihood is

logEL =

n∑
i=1

δi logwi + (1− δi) log

n∑
j=1

wjI[Tj > Ti]

 .

If we maximize the log EL above without constraint (i.e. no extra constraints, the proba-

bility constraint wi ≥ 0,
∑
wi = 1 is always imposed), it is well known that the Kaplan-Meier

estimator (Kaplan and Meier 1958) wi = ∆F̂KM (Ti) will achieve the maximum value of the

log EL.

2 A Wilks Theorem for Several Means

To form the ratio of two empirical likelihoods, we not only need to find the maximum of the

log EL among all F , but we also need to find the maximum of log EL under a null hypothesis.

We shall next specify the null hypothesis. A natural hypothesis to consider is the hypothesis

involving linear or mean functionals. As Owen (1988) have shown, this includes the M- and

Z- estimates.

Please note a similar argument as in Owen (1988) will show that we may restrict our

attention in the EL analysis, i.e. search maximum under null hypothesis, to those discrete

CDF F that are dominated by the Kaplan-Meier estimator: F (t)� F̂KM (t). [that is, discrete

distributions with jump location same as the Kaplan-Meier] Owen 1988 restricted his attention

to those distribution functions F that are dominated by the empirical distribution.

3



The first step in our analysis is to find a discrete CDF that maximizes the log EL(F ) under

the (null) hypothesis (1), which are specified as follows:∫ ∞
0

g1(t)dF (t) = µ1∫ ∞
0

g2(t)dF (t) = µ2 (1)

· · · · · · · · ·∫ ∞
0

gp(t)dF (t) = µp

where gi(t)(i = 1, 2, . . . , p) are given functions satisfy some moment conditions (specified later),

and µi (i = 1, 2, . . . , p) are given constants. Without loss of generality, we shall assume all

µi = 0. The constraints (1) can be written as (for discrete CDF, and in terms of wi = ∆F (Ti))

n∑
i=1

g1(Ti)wi = 0

n∑
i=1

g2(Ti)wi = 0 (2)

· · · · · · · · ·
n∑
i=1

gp(Ti)wi = 0 .

We must find the maximum of the logEL(F ) under these constraints. We shall accomplish

that in two steps. First we construct a p parameter family of CDF that pass through (and

dominated by) the Kaplan-Meier estimator, in the direction h. Then we find the CDF in this

family that satisfy the constraints. Secondly, we will maximize the logEL over all possible h.

Notice that any discrete CDF dominated by the Kaplan-Meier estimator can always be

written as (in terms of its jump)

∆F (Ti) = ∆F̂KM (Ti)[1− h(Ti)] , i = 1, 2, . . . , n;

for some h function. Of course this distribution usually do not satisfy the constraints above.

This motivates us to define the following:

For any p given functions of t, h = (h1(t), . . . , hp(t)), we define a family of distributions

(indexed by λ ∈ Rp and dominated by the Kaplan-Meier estimator) by its jumps

∆F (Ti) = ∆Fλ(Ti) = ∆F̂KM (Ti)[1− λ>h(Ti)] (3)
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where we require the total jumps sum to one (as any discrete CDF must) which lead to∑
i

h(Ti)∆F̂KM (Ti) = 0. (4)

The notation above λ>h(Ti) is the inner product λ1h1(Ti) + . . .+ λphp(Ti).

Since the jumps of Kaplan-Meier estimator is between zero and one, at least for small values

of λ (in a neighborhood of zero) the jumps of so defined F above are going to be between zero

and one and thus, is a legitimate distribution for those small λ’s. Obviously, when λ = 0, we

have Fλ=0 = F̂KM .

We shall also, WOLG, require that ‖h‖2 = K, for some fixed constant K > 0 (since

λ>h = (λ/a)>ah). We shall take λ = (λ1, . . . , λp) as the parameter who’s value will be selected

to make this distribution satisfy the hypothesis/constraints (1) above. The requirement that

the distribution satisfy the constraints/hypothesis (1) will force the λ to take certain value, as

in the following equations:

0 =
n∑
i=1

gj(Ti)∆Fλ(Ti) j = 1, 2, · · · , p. (5)

Denote the solution of the above equation as λ∗. The fact that it has a unique solution can

be guaranteed by the assumption that matrix A (defined in the Lemma 2 below) is invertible.

(We, in fact, will assume a slightly stronger condition: that the condition number of A be

bounded away from zero).

The next lemma will be useful later.

Lemma 1 Define a vector gg of length p with elements ggj =
∑

i gj(Ti)∆F̂KM (Ti). Under

null hypothesis (1), we have, (since the true mean of g are assumed to be zero under null, no

centering constants are needed)

√
n gg

D−→ N(0,Σ) as n→∞ .

The asymptotic (p × p) variance-covariance matrix Σ = [σjk] (assumed to be non-singular) is

given by

σjk =

∫
[gj(x)− ḡj(x)][gk(x)− ḡk(x)]

dF0(x)

1−G0(x−)

and it can be consistently estimated by Σ̂ = [σ̂jk]

σ̂jk =

n∑
i=1

[gj(Ti)− ḡj(Ti)][gk(Ti)− ḡk(Ti)]
∆F̂KM (Ti)

1− ĜKM (Ti)
,
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where ḡj is the ‘advanced-time transformation’ of gj defined by Efron and Johnstone (1991),

either with respect to the F0 (in σjk above) or with respect to the Kaplan-Meier estimator

(in σ̂jk above). See also Lemma A.1 in the appendix for advanced-time. Finally ĜKM is the

Kaplan-Meier estimator of the censoring distribution.

Proof: This theorem is just the asymptotic normality of the Kaplan-Meier integral, which

has been treated by many others before. What is new is perhaps the variance-covariance

formula. It can easily be proved by using the representation of Akritas (2000) which contains

a univariate version of this lemma. Using the representation of Akritas, one then invoke the

multivariate central limit theorem for the counting process martingales to finish proof. One

such Central Limit Theorem for counting process martingales can be found in Kalbfleish and

Prentice (2002) Chapter 5.

The assertion that the variance-covariance can be consistently estimated can be seen from

the fact that it is an plug-in estimator, and the Kaplan-Meier estimator is uniformly strongly

consistent. �

Solving equation (5) gives the following solution of λ for the constraint equations, which

we call λ∗.

Lemma 2 Assume the conditions of Lemma 1. Denote the solution of (5) as λ∗. Assume

the condition number of the matrix A is bounded away from zero. Then the distribution Fλ

that satisfy the constrain (5) must have

λ∗A = gg

or

λ∗ = A−1gg

where the p× p matrix A = [ajk] is defined by the elements

ajk =
n∑
i=1

gj(Ti)hk(Ti)∆F̂KM (Ti) . (6)

Also, the elements may be written as

ajk =
∑
i

[gj(Ti)− Egj ][hk(Ti)− Ehk]∆F̂KM (Ti) .
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Proof: Plug (3) in to (5) and solving equation (5) to arrive the stated result. The last

expression of ajk is valid since
∑

i hk(Ti)∆F̂KM (Ti) = 0, so both of the ajk expressions are

valid expressions of the covariance.

We see that Eh2 = K2 <∞ for all h. Also, we have that Eg2 <∞ (assumption of Lemma

1). To ensure the inverse matrix exist, we need to impose one more condition. Please see

remark 2 below. �

Remark 1: We are to find the maximum of the logEL among all h. Yet we placed some

restrictions on h. The assumption we need to place on h, for given g is that this matrix A

should be invertible. For those h that A is not invertible, we may argue that this sub-family of

distributions do not have a solution that satisfy the constraints (1), and thus can be ignored

in the search of maximizing logEL under constraints. On the other hand, the least favorable

h∗ we calculated in (11) will lead to an A matrix that is identical to Σ̂ defined in Lemma 1,

which by assumption is a non singular variance-covariance matrix for sufficiently large n, and

thus invertible.

Remark 2: Under the null hypothesis, gg is of order Op(1/
√
n) (Lemma1). If the h

function is such that the inverse matrix of A has a bounded condition number, then λ∗ is also

of order Op(1/
√
n), uniformly for those h.

Remark 3: In order to work with the inverse matrix, we end up with a condition on h in

terms of a matrix as below. Assume the following matrix is positive definite:

A∞ = (a∞ij ), where a∞ij =

∫ ∞
0

gi(t)hj(t)dF0(t) (7)

Notice once we assumed A∞ is invertible, a finite sample version of this should also hold for

large enough n, as needed in the Lemma 2. The meaning of this is that we need to avoid those

h that are (almost) perpendicular to g. In (11) we see that the particular h we are interested

is not perpendicular to g, in fact, far from it.

Define f(λ) = logEL(Fλ). It is easy to see that when λ = 0, Fλ becomes the Kaplan-Meier

estimator. So the Wilks statistic is just 2[f(0)− suph f(λ∗)] = −2 logELR.

Taking a Taylor expansion with f(λ∗), we have

Wilks statistics = inf
h

2{f(0)− f(0)− λ∗f ′(0)− 1/2[λ∗]>f
′′
(0)λ∗ +Op(λ

∗)}

7



Notice that obviously f ′(0) = 0 since the derivative of log likelihood at the maximum (i.e. the

Kaplan-Meier) must be zero no matter what h. Recall the Kaplan-Meier estimator is the MLE

that maximizes logEL. This can also be readily checked, using the self-consistency identity

(appendix) and the fact that
∑

i h(Ti)∆F̂KM (Ti) = 0.

We finally have

Wilks statistics = inf
h

[
√
nλ∗]>

(
−f ′′(0)/n

)
[
√
nλ∗] + op(1); (8)

provided the op(1) is uniform over h, which we pointed out is true under the assumption of

condition number for the matrix A∞ (Remark 2 and 3).

The rest of the analysis will focus on the first term on the right hand side of (8) above.

First we calculate the second derivative f
′′
, simplify it. Then we show the infimum over h

of the right hand (ignore the op(1) part) is achieved at an h satisfy the equation (11) below.

And finally, for this particular h the above Wilks statistics becomes a Hotelling’s T 2 and thus

having asymptotically a chi square distribution with df= p.

Theorem 1 Let (T1, δ1), . . . , (Tn, δn) be n pairs of i.i.d. censored random variables as defined

above. Suppose gi i = 1, . . . , p are given functions such that the p × p asymptotic variance-

covariance matrix of the Kaplan-Meier mean estimator,
∫
gi(t)dF̂KM (t), is well defined and

positive definite. That is, the p× p matrix Σ below, is well defined and positive definite:

Σ = (σjk) =

∫
[gj(x)− ḡj(x)][gk(x)− ḡk(x)]

(1−G0(x−))
dF0(x) . (9)

Assume also that the matrix A∞ is invertible.

Then, under null hypothesis (1) as n →∞, we have

−2 logELR
D−→ χ2

(p) as n→∞

where logELR = suph logEL(Fλ∗)− logEL(F̂KM ).

In fact we have

−2 logELR = [
√
ngg]>Σ̂−1[

√
ngg] + op(1) ,

where gg and Σ̂ are defined in Lemma 1.
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A sufficient condition to guarantee the (single) integral in (9) to be well defined was pointed

out by Akritas (2000)

0 <

∫
g2j (x)

1−G0(x−)
dF0(x) <∞ , j = 1, · · · , p.

To ensure the matrix Σ is nonsingular, we require that the gi functions are so called linearly

independent. In other words, the p constraints are all genuine, no redundancy.

Proof of Theorem 1. We proceed by proving two more lemmas.

Lemma 3 The second derivative f
′′
(0) defined above is equal to −nB with the elements

of the matrix B defined below in (10).

We now compute the second derivative f
′′
(0). Straight forward calculation show that this

is a p× p matrix. The jkth elements of the matrix [−f ′′(0)/n] = B = [bjk] is given by

bjk =

n∑
i=1

hj(Ti)hk(Ti)
δi
n

+
n∑
i=1

1− δi
n

[
∑

m:Tm>Ti

hj(Tm)∆F̂KM (Tm)][
∑

m:Tm>Ti

hk(Tm)∆F̂KM (Tm)]

[1− F̂KM (Ti)]2
.

After several rounds of tedious simplifications (see appendix for details) we have

bjk =

n∑
i=1

[hj(Ti)− h̄j(Ti)][hk(Ti)− h̄k(Ti)][1− ĜKM (Ti)]∆F̂KM (Ti) . (10)

Lemma 4 (Matrix Cauchy-Schwarz inequality) For any h we have

[A−1]>BA−1 ≥ Σ̂−1

where the ≥ means the matrix inequality for positive-definite matrices. And the equality is

achieved by h∗ that satisfy (11) below. For j = 1, 2, . . . , p

[h∗j (x)− h̄∗j (x)] =
gj(x)− ḡj(x)

1− ĜKM (x−)
a.s. F̂KM . (11)

Obviously any h that is a constant multiple of (11) also achieve the equality. (i.e. h has a

constant free play).

Proof: First we rewrite the entries of matrix A as

ajk =
n∑
i=1

gj(Ti)− ḡj(Ti)√
1− ĜKM (Ti)

[hk(Ti)− h̄k(Ti)]
√

1− ĜKM (Ti) ∆F̂KM (Ti) .
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This is valid see the advanced transformation identity in appendix later. So, in terms of the

expectation with respect to the Kaplan-Meier, we have

ajk = E
(g − ḡ)√

1−G
(h− h̄)

√
1−G = E(αβ), say

and furthermore,

bjk = E (h− h̄)
√

1−G (h− h̄)
√

1−G = E(β2) ,

σ̂jk = E
g − ḡ√
1−G

g − ḡ√
1−G

= E(α2) .

The inequality can then follow easily from the well known matrix Cauchy-Schwarz inequality

(see Tripathi (1999) and references therein). �

Using Lemma 4, we see that for any y, the quadratic form, y>A−1>BA−1y ≥ y>Σ̂−1y.

And the equality is achieved for h satisfy (11).

Using Lemma 1, 2, 3 and this Cauchy-Schwarz inequality, we see that

Wilks Statistics = inf
h

[
√
ngg]>[A−1]>BA−1[

√
ngg]+op(1) = [

√
ngg]>Σ̂−1[

√
ngg]+op(1) . (12)

As n → ∞ the right hand side is clearly converging to a chi square distribution under null

hypothesis with df = p. The proof of Theorem 1 is now complete. �

Remark 4: In other words, the least favorable direction is given by (11). Or, if we define

a parametric model by the equation (3), this is what Stein (1956) called the most difficult

parametric problem.

Remark 5: If we want to profile out part of the parameters in the above empirical likeli-

hood ratio, we shall get a chi square distribution with reduced degrees of freedom. This can be

easily seen from the asymptotic representation of the empirical likelihood ratio as a Hotelling’s

T 2, for which the similar profiling result is well known.

3 Discussion

We make some critical use of the “advanced time change” of Efron and Johnstone (1990).

The least favorable distribution we found is also specified in terms of the advanced time change.

See the equation (3) and (11). We also used a multivariate version of the Akritas’ (2000) Central

Limit Theorem for the Kaplan-Meier integral, in particular the variance/covariance expression.
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The computation of the empirical likelihood ratio discussed in this paper has been available

using the R package emplik. For example the empirical likelihood ratio test as we stated in

Theorem 1 in section 3 can be computed by the function el.cen.EM2 there.

The empirical likelihood for the integrated hazards was studied by Pan and Zhou (2002).

Appendix:

Simplification of the second derivative −f ′′(0)/n.

The first ‘simplification’ uses the self consistency identity (Lemma A.2 below, with g =

hjhk) to the first term of −f ′′(0)/n.

bjk =
n∑
i=1

hj(Ti)hk(Ti)∆F̂KM (Ti)−
n∑
i=1

1− δi
n

∑
Tj>Ti

hj(Tj)hk(Tj)∆F̂KM (Tj)

1− F̂KM (Ti)

+
n∑
i=1

1− δi
n

[
∑

m:Tm>Ti

hj(Tm)∆F̂KM (Tm)][
∑

m:Tm>Ti

hk(Tm)∆F̂KM (Tm)]

[1− F̂KM (Ti)]2
.

The last two summations above (those with 1− δi) can be combined by using the identity

EXY − (EX)(EY ) = E(X − EX)(Y − EY ). In fact we use it n times, each with a different

conditional distribution, to get the following.

bjk =
n∑
i=1

hj(Ti)hk(Ti)∆F̂KM (Ti)

−
n∑
i=1

1− δi
n

∑
m:Tm>Ti

[hj(Tm)− EF̂ (hj |t > Ti)][hk(Tm)− EF̂ (hk|t > Ti)]∆F̂KM (Tm)

1− F̂KM (Ti)
.

Notice, we have many expressions of covariances in the above. The first summation can also

be written as
∑

[hj − Ehj ][hk − Ehk]∆F̂KM since
∑
hj∆F̂KM = 0. Our second simplification

uses the advanced time identity (see below) to re-write the covariance expressions. We use the

identity n + 1 times for either the Kaplan-Meier CDF or the conditional Kaplan-Meier CDF

to get

bjk =
n∑
i=1

[hj(Ti)− h̄j(Ti)][hk(Ti)− h̄k(Ti)]∆F̂KM (Ti)

−
n∑
i=1

1− δi
n

∑
m:Tm>Ti

[hj(Tm)− h̄j(Tm)][hk(Tm)− h̄k(Tm)]∆F̂KM (Tm)

1− F̂KM (Ti)
.

11



Third simplification uses the self-consistency identity again (with g = [hj − h̄j ][hk − h̄k] ).

This allows us to combine the two terms. We get,

bjk =

n∑
i=1

[hj(Ti)− h̄j(Ti)][hk(Ti)− h̄k(Ti)]
δi
n
.

Fourth and final simplification uses the following identity to replace δi/n,

δi

n(1− ĜKM (Ti))
= ∆F̂KM (Ti) .

This identity can be proved from the well known fact for the Kaplan-Meier estimator [1 −

F̂KM (t)][1− ĜKM (t)] = 1−H(t) = 1/n
∑n

i=1 I[Ti > t].

We finally get what we want.

bjk =
n∑
i=1

[hj(Ti)− h̄j(Ti)][hk(Ti)− h̄k(Ti)][1− ĜKM (Ti)]∆F̂KM (Ti) .

Lemma A.1: (Advanced-time identity) [Efron and Johnstone 1990] Define the ‘advanced

time’ transformation for a function g(t) with respect to a CDF F (·) as

ḡ(s) = ḡF (s) =

∫
(s,∞) g(x)dF (x)

1− F (s)
= EF [g(X)|X > s] .

Then we have

VarF (g) =

∫
[g(x)− EF g]2dF (x) =

∫
[g(x)− ḡ(x)]2dF (x)

and

CovF (g, h) =

∫
[g(t)− EF g]h(t)dF (t) =

∫
[g(t)− ḡ(t)][h(t)− h̄(t)]dF (t)

where EF g =
∫
g(x)dF (x).

Proof: The result for the variance is directly from Efron and Johnstone (1990). The result

for the covariance can be proved similarly. �

Lemma A.2 (Self-consistency identity) For the Kaplan-Meier estimator, F̂KM , we have

that for any function g(·)

∑
i

g(Ti)∆F̂KM (Ti) =
∑
i

δi
n
g(Ti) +

∑
i

(1− δi)
n

∑
Tj>Ti

g(Tj)∆F̂KM (Tj)

1− F̂KM (Ti)
.

Proof: The probability corresponding to g(Tk) on the left hand side is ∆F̂KM (Tk). The

probabilities associated with g(Tk) on the right hand side is precisely those given by Turnbull

(1976) self-consistent equation. It is well known that Kaplan-Meier estimator is self consistent.

�
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