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Abstract In this note we give a recursive computational algorithm for the ‘constrained’ Kaplan-Meier
estimator. The constrain is assumed given in linear estimating equations or mean functions. We also
illustrate how this leads to the empirical likelihood ratio test with right censored data. Speed comparison
to the EM based algorithm favors the current procedure.
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1 Introduction

Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables denoting the lifetimes with a
continuous distribution function F0. Independent of the lifetimes there are censoring times C1, C2, . . . , Cn

which are i.i.d. with a distribution G0. Only the censored observations, (Ti, δi), are available to us:

Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci] for i = 1, 2, . . . , n. (1)

The empirical likelihood of the censored data in terms of distribution F is defined as

EL(F ) =

n∏
i=1

[∆F (Ti))]
δi [1− F (Ti)]

1−δi

=
n∏

i=1

[∆F (Ti))]
δi{

∑
j:Tj>Ti

∆F (Tj)}1−δi

where ∆F (t) = F (t+) − F (t−) is the jump of F at t. See for example [Kaplan and Meier(1958)] and
[Owen(2010)]. The second line above assumes a discrete F (·). It is well known that the constrained or
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unconstrained maximum of the empirical likelihood are both obtained by discrete F . Let wi = ∆F (Ti)
for i = 1, 2, . . . , n. The likelihood at this F can be written in term of the jumps

EL =
n∏

i=1

[wi]
δi{

n∑
j=1

wjI[Tj > Ti]}1−δi ,

and the log likelihood is

logEL =
n∑

i=1

δi logwi + (1− δi) log
n∑

j=1

wjI[Tj > Ti]

 . (2)

If we maximize the log EL above without constraint (I mean no extra constraints, the probability
constraint wi ≥ 0,

∑
wi = 1 is always imposed), it is well known [Kaplan and Meier(1958)] that the

Kaplan-Meier estimator wi = ∆F̂KM (Ti) will achieve the maximum value of the log EL.

Empirical likelihood ratio method is first proposed by [Thomas and Grunkemeier(1975)] in the con-
text of a Kaplan-Meier estimator. This method has been studied by [Owen(1988),Owen(2010),Li(1995),
Murphy and van der Vaart(1997)] and [Pan and Zhou(1999)] among many others. When using the em-
pirical likelihood with right censored data in testing a general hypothesis, [Zhou(2005)] gave an EM
algorithm to compute the likelihood ratio. He compared the EM algorithm to the sequential quadratic
programming method [Chen and Zhou(2007)], and concludes that the EM is better. Though quite sta-
ble, the EM can be slow in certain data settings. See more example in section 3. We shall give a new
computation procedure for the constrained maximum of the log empirical likelihood above, and this
lead to the computation of the empirical likelihood ratio for testing. This algorithm is recursive and
much faster.

2 The computation of mean constrained maximum

In order to compute the empirical likelihood ratio, we need two empirical likelihoods: one with
constraints, one without. The maximum of the empirical likelihood without constraint is achieved by
F equals to the Kaplan-Meier estimator, as is well known. It remains to find the maximum of logEL
under constraints.

A similar argument as in [Owen(1988)] will show that we may restrict our attention in the EL
analysis, i.e. search max under constrains, to those discrete CDF F that are dominated by the Kaplan-
Meier: F (t) ≪ F̂KM (t). [Owen 1988 restricted his attention to those distribution functions that F (t) ≪
the empirical distribution.]

The first step in our analysis is to find a discrete CDF that maximizes the log EL(F ) under the
constraints (3), which are specified as follows:∫ ∞

0

g1(t)dF (t) = µ1∫ ∞

0

g2(t)dF (t) = µ2 (3)

· · · · · · · · ·∫ ∞

0

gp(t)dF (t) = µp

where gi(t)(i = 1, 2, . . . , p) are given functions satisfy some moment conditions (specified later), and
µi (i = 1, 2, . . . , p) are given constants. Without loss of generality, we shall assume all µi = 0. The
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constraints (3) can be written as (for discrete CDFs, and in terms of wi = ∆F (Ti))

n∑
i=1

g1(Ti)wi = 0

n∑
i=1

g2(Ti)wi = 0 (4)

· · · · · · · · ·
n∑

i=1

gp(Ti)wi = 0 .

We must find the maximum of the logEL(F ) under these constraints. We shall use the Lagrange
multiplier to find this constrained maximum.

Without loss of generality assume wi is only positive at the uncensored observations, except may be
the last observation. Without loss of generality assume the observations are already ordered according to
T and the smallest observation is an uncensored one (δ1 = 1). To see this, suppose the first observation
is right censored and second one is uncensored. In this case, δ1 = 0, and w1 = 0. Hence

w1 = 0 ,

n∑
i=2

wi = 1. (5)

The i-th term in log empirical likelihood is

δi logwi + (1− δi) log
n∑

j=i+1

wj .

This is true as observations are sorted according to T . Assuming 0 × log(0) = 0, as shown in (5), the
log empirical likelihood only depends on w2, . . . , wn. Additionally, the first observation with δ = 0 has
no contribution to the constraints.

Assume there are n distinct values of T , which are already ordered. Let k be the number of censored
observations among the n’s. Thus we have only n− k positive probability wi’s.

Introduce k new variables, one for each censored T observation, i.e. assume δj = 0 and let:

Sj =
∑

Ti>Tj

wi = 1−
∑

Ti≤Tj

wi . (6)

This adds k new constraints to the optimization problem. We write the vector of those k constraints as
Sj −

∑
Ti>Tj

wi = 0.
With these k new variables Si, the log empirical likelihood in section 1 can be written simply as

logEL =
∑
δi=1

logwi +
∑
δi=0

logSi . (7)

The Lagrangian function for constrained maximum is

G = logEL(wi, Sj) + λ⊤

(∑
δi=1

δiwig(Ti)

)
− η

(
n∑

i=1

wi − 1

)
− γ⊤

(
S −

∑
Ti>·

wi

)
.

There are p constraints on the means, so length of λ is p; one constraints on the summation of wi being
one, so η is a scalar; and k constraints on the Sj , so the length of γ is k.

Next we shall take the partial derivatives and set them to zero. We shall show that η = n.
First we compute

∂G

∂Sj
=

1− δj
Sj

− γj
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Setting the derivative to zero, we have

γj = (1− δj)/Sj . (8)

Furthermore,
∂G

∂wk
=

δk
wk

+ λδkg(Tk)− η + γ⊤(I[Tj < Tk, δj = 0])

set the derivative to zero, (write k as i)

η =
δi
wi

+ λδig(Ti) + γ⊤(I[Tj < Ti, δj = 0])

Multiply wi on both sides and sum,∑
i

wiη =
∑
i

δi + λ
∑
i

δiwig(Ti) + (
∑
i

wiγ
⊤I[Tj < Ti, δj = 0]) .

Make use the other constraints, this simplifies to

η = (n− k) + 0 +
∑
i

wiγ
⊤I[Tj < Ti, δj = 0] . (9)

We now focus on the last term above. Plug in the γj expression we obtained in (8) above, switch order
of summation and it is not hard to see that

∑
i

wiγ
⊤I[Tj < Ti, δj = 0] =

∑
i

wi

∑
j

γjI[Tj < Ti, δj = 0]

 (10)

=
∑
j

∑
i

wiI[Tj < Ti, δj = 0]

Sj
=
∑
j

1I[δj = 0] = k . (11)

Therefore equation (9) becomes η = (n− k) + 0 + k. Therefore η = n.
Thus, we have

wi =
δi

n− λ⊤δig(Ti)− γ⊤I[Tj < Ti, δj = 0]
(12)

where we further note (plug in the γ)

γ⊤I[Tj < Ti, δj = 0] =
∑
j

(1− δj)

Sj
I[Tj < Ti, δj = 0] =

∑
j: δj=0

I[Tj < Ti]

Sj
.

This finally gives rise to

wi = wi(λ) =
δi

n− λ⊤δig(Ti)−
∑

j:δj=0
I[Tj<Ti]

Sj

(13)

which, together with (5), provides a recursive computation method for the probabilities wi, provided λ
is given:

1. Starting from the left most observation, and without loss of generality (as noted above) we can
assume it is an uncensored data point: δ1 = 1. Thus

w1 =
1

n− λg(T1)
.
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2. Once we have wi for all i ≤ k, we also have all Sj where Tj < Tk+1 and δj = 0, by using
(Sj = 1−

∑
i I[Ti ≤ Tj ]wi), then we can compute

wk+1 =
δk+1

n− λ⊤g(Tk+1)−
∑

j: δj=0
I[Tj<Tk+1]

Sj

.

So, this recursive calculation will give us wi and Sj as a function of λ.

Remark: In the special case of no constraint of mean, then there is no λ (or λ = 0) and we have

wk+1 =
δk+1

n−
∑

j: δj=0
I[Tj<Tk+1]

Sj

we can show that this is actually the jump of the Kaplan-Meier estimator, as it should be. (Proof: use
the identity (1− F̂ )(1− Ĝ) = 1− Ĥ, we first get a formula for the jump of the Kaplan-Meier estimator:
wi = 1/n× 1/(1− Ĝ). This works for F̂ as well as for Ĝ. we next show that

1− 1/n
∑

j: δj=0

I[Tj < Tk+1]

Sj
= (1− Ĝ(Tk+1))

since the left hand side is just equal to the summation of jumps of Ĝ before Tk+1. )

Finally where is the λ going to come from? We may get it from the constraint equation

0 =
∑
i

δiwi(λ)g(Ti) =
∑
i

δig(Ti)

n− λ⊤δig(Ti)−
∑

j: δj=0
I[Tj<Ti]

Sj

. (14)

So, the iteration goes like this:

(1) pick a λ value, near zero. (remember zero λ gives the Kaplan-Meier)

(2) with this λ find all the wi’s and Sj ’s by the recursive formula.

(3) plug those wi into the equation (14) above and you got a mean value, call it θ. [The wi’s you
obtained in step (2) are actually the constrained Kaplan-Meier with the constraint being these θ instead
of zero]. Check to see if θ is zero, if not; change the λ value and repeat, until you find a λ which gives
rise to wi and Sj that satisfy the mean zero requirement (14).

For one dimensional λ this is going to be easily handled by the uniroot( ) function in R. For multi
dimensional λ this calls for a Newton type iteration.

The empirical likelihood ratio is then obtained as

−2 logELR = −2{logEL(wi, Sj)− logEL(wi = ∆F̂KM (Ti))} ;

for the first log EL inside the curly bracket above we use the expression (6) with the wi, Sj computed

from the recursive method in this section, and the second term is obtained by (2) with wi = ∆F̂KM (Ti),
the regular Kaplan-Meier estimator.

Tied observations poses no problem for the algorithms discussed, as we can incorporate a weight for
each observation.

Under the assumption that the variance of
∫
g(t)dF̂KM (t) are finite, we have a chi square limiting

distribution for the above -2 log empirical likelihood ratio, under null hypothesis (The Wilks’ Theorem).
Therefore we reject the null hypothesis if the computed -2 empirical likelihood ratio exceeds the chi
square 95% percentile with p degrees of freedom. See [Zhou(2010)] for a proof of this theorem.
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3 Simulation

If the Jacobian matrix of mean zero requirement (14) is not singular, Newton method could be used
to find the root of (14). As mentioned previously, the null parameter space which has no constraint
corresponds to λ = 0.

We shall call the recursive computation for w′
is plus the Newton iteration for λ as KMC method,

which will also be the name of the R package.
In each Newton iteration when we try to find the root, it is helpful to know the bound of solution, or

so called, feasible region. In the KMC computation, it is obvious that those λ′s such that n−λ⊤δig(Ti)−∑
j:∼δj=0

I[Tj<Ti]
Sj

= 0 will lead (14) to ∞. Denote those roots as λ⋆
i ∈ Rp, i = 1, . . . , n. Any i-th entry

of the desired λ root for (14) and 0 must satisfy

∃j such that λ⋆
iji < 0, λi < λ⋆

ij+1i ∀i = 1, . . . , p

where λ⋆
ij is the j-th entry of vector λ⋆

i such that λ⋆
i1i

< . . . < λ⋆
ini

, and λ⋆
0,i

∆
= −∞, λ⋆

n+1,i
∆
= +∞. So,

our strategy is to start at 0 and try to stay within the feasible region at all times when carry out the
Newton iterations.

We could also calculate the analytical derivatives used in the Newton iteration. Define

f(λ) =
∑
i

δiwi(λ)g(Ti)

To compute ∂
∂λf(λ), we only need to calculate ∂

∂λwi and
∂
∂λSj = ∂

∂λ

(
1−

∑j
k=1 wk

)
= − ∂

∂λ

∑j
k=1 wk.

There are no closed forms of such derivatives, but it could again be derived recursively.

(1) w1 = 1
n−λg(T1)

, and ∂
∂λw1 = w2

1g(T1)

(2) ∂
∂λwk+1(λ) = δk+1(wk+1)

2
(
g(Tk+1) +

∑
j:δj=0

(
ITj<Tk+1

(Sj)
−2 ∂

∂λ

∑j
s=1

∂
∂λws

))
To evaluate the performance of this algorithm, a series of simulations had been done. We compared
with standard EM algorithm (Zhou, 2005). Without further statement, all simulation works have been
repeat 5,000 times and implemented in R language [Team et al(2005)]. R-2.15.3 is used on a Windows
7 (64-bits) computer with 2.4 GHz Intel(R) i7-3630QM CPU.
Experiment 1 : Consider a right censored data with only one constraint:{

X ∼ Exp(1)
C ∼ Exp(β)

(15)

Censoring percentage of the data are determined by different β′s. Three models are included in the
experiments

(1) β = 1.5, then 40% data are uncensored
(2) β = 0.7, then 58.9% data are uncensored
(3) β = 0.2, then 83.3% data are uncensored

The common hypothesis is (4), where g(x) = (1 − x)1(0≤x≤1) − e−1. We could verify that the true
expectation is zero:

∫
g(x)dF (x) =

∫
(1− x)1(0≤x≤1)e

−xdx− e−1=0.
To compare the performances of KMC and EM algorithm, we use four different sample sizes, i.e. 200,
1,000, 2,000, and 5,000 in the experiments. To make fair comparisons, ∥f (t) − f (t+1)∥ℓ2 ≤ 10−9 is used
as the convergence criterion. Average spending time is reported to compare the computation efficiency
in Table [1]. The no censored case is included for reference, this is equivalent to Newton solving λ
without recursion. In all cases in our study, EM and KMC reported almost the same χ2 test statistics
and quantile to quantile plot is shown in Fig[1].
As shown in Table [1], we observed the following phenomenons:
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Table 1 Average running time of EM/KMC (in second). “No Censor” column refers to time spend on solving empirical
likelihood without censoring in R el.test(emplik). We use this as a comparison reference.

Censoring Rate N EM KMC(nuDev) KMC(AnalyDev) No Censor
200 0.175 0.011 0.028 0.005

60% 1000 3.503 0.106 0.211 0.007
β = 1.5 2000 13.935 0.349 0.692 0.033

5000 73.562 1.801 3.663 0.036
200 0.064 0.010 0.029 0.000

41% 1000 1.058 0.115 0.268 0.010
β = 0.7 2000 4.104 0.385 0.836 0.020

5000 22.878 2.367 4.693 0.037
200 0.014 0.008 0.029 0.002

17% 1000 0.117 0.071 0.240 0.009
β = 0.2 2000 0.425 0.240 0.694 0.018

5000 2.702 1.220 3.282 0.026

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Q−Q Plot

Simulation Result

C
hi

sq

Fig. 1 Q-Q Plot for KMC with β = .2 N=1,000

(1) KMC always outperformed EM algorithm in speed at different simulation settings.
(2) Computation complexity of EM increased sharply with the percentage of censored data increasing.

This is reasonable, since more censored data needs more E-step computation. But censored rate did
not affect KMC much.

(3) Sample size is related to the computation complexity. We could see the running time of both EM
and KMC increased along with the sample size.

(4) Another phenomenon is that, the computation of numeric derivative and analytic derivative of KMC
is similar. This fact is straightforward, as KMC depends on solving (14) which is defined iteratively.

To summarize, when sample size is small and censored rate is low, the performance of EM and KMC
is similar. But either in the large sample case or heavily censored case, KMC far outperformed EM
algorithm with the same stopping criterion.
Experiment 2 : Consider a right censored data setting with two constraints. The i.i.d. right censored
data are generated from (1) using {

X ∼ Exp(1)
C ∼ Exp(.7)

(16)
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with the following hypothesis:

H0 :
∑
i

gj(Ti)wi = 0; j = 1, 2 where

{
g1(x) = (1− x)1(0≤x≤1) − e−1

g2(x) = 1(0≤x≤1) − 1 + e−1 (17)

It is straightforward to verify that both g functions have expectation zero. In this simulation study, we

Table 2 Average running time of EM/KMC (in second)

Censoring Rate N EM KMC(nuDev)
41% 200 3.055 0.033
41% 500 55.601 0.083

observed that EM spent great amount of time (3s∼55s per case) to meet the converge criterion, while
the average running time of KMC was considerable shorter (0.03s∼0.08s). This dramatic result shows
in multi-dimensional case, KMC runs much faster than EM algorithm. Only numerical derivatives were
used in our simulations, one could implement the analytic ones using iteration shown previously. But in
multi-dimensional case, the iterative type of derivatives do not have advantage over numeric ones. We
recommend to use KMC with numeric derivative if one has more than one hypothesis even the sample
size is small.
Experiment 3 : Other than exponential setting, considering a right censored data with one constraints:{

X ∼ Exp(1)
C ∼ U(0, η)

(18)

with hypothesis

H0 :
∑
i

g(Ti)wi = 0; with g(x) = (1− x)1(0≤x≤1) − e−1

we carried out some experiments on censoring time Ci from uniform distribution. There were two
models:

(1) η = 2, then 56.77% data are uncensored
(2) η = 4, then 75.46% data are uncensored

Table 3 Average running time of EM/KMC (in second) of one constraint and Uniform distributed censored time

Censoring Rate N EM KMC(nuDev) KMC(AnalyDev) No Censor
43% 200 0.104 0.014 0.038 0.004
η = 2 2000 9.700 0.654 1.288 0.107
25% 200 0.029 0.008 0.031 0.003
η = 4 2000 3.040 0.309 0.858 0.136

We found that the result shown in Tab[3] is very similar to Tab[1], which infers that different
distribution of censored time will not affect the simulation result too much.

4 Discussion and Conclusion

In this manuscript, we proposed a new recursive algorithm, KMC, to calculate log empirical likeli-
hood ratio statistics of right censored data with linear types of hypothesis. Our method used Lagrange
multiplier method directly, and recursively computes the test statistics.
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Numerical simulations show this new method has an advantage against traditional EM algorithm in
the sense of computational complexity. Our simulation work also shows that the performance of KMC
does not depend on the censoring rate, and outperformed EM algorithm at every simulation setting.
We recommend to use KMC in all cases but particular large gain are expected in the following cases:

(1) Sample size is large (e.g. > 1000 observations);
(2) Data are heavily censored (e.g. censored rate > 40%);
(3) There are more than one constraint.

On the other hand, and somewhat surprisingly, the analytic derivative did not help speed up com-
putation in our simulation study. Besides, since KMC with numeric method could be extended to more
than one constraints case, we highly recommend using numeric derivative in KMC rather than analytical
one.

One of the issues of KMC is the initial value choosing, as is the case for most Newton algorithms.
The performance of root solving relies on the precision of numerical derivative and Newton method.
Our current strategy uses the M-step output of EM algorithm with only two iterations. Other better
initial values are certainly possible. In addition, current KMC only works on right censored data, while
EM algorithm works for right-, left- or doubly censored data; or even interval censored data. We were
unable to find a proper way to derive such recursive computation algorithm in other censoring cases.
(Software is available to download at http://github.com/yfyang86/kmc)
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