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Abstract: Random survival forests and survival trees are popular models in

statistics and machine learning. However, there is a lack of general understanding

regarding consistency, splitting rules and influence of the censoring mechanism.

In this paper, we investigate the statistical properties of existing methods from

several interesting perspectives. First, we show that traditional splitting rules

with censored outcomes rely on a biased estimation of the within-node failure

distribution. To exactly quantify this bias, we develop a concentration bound of

the within-node estimation based on non i.i.d. samples and apply it to the entire

forest. Second, we analyze the entanglement between the failure and censoring

distributions caused by univariate splits, and show that without correcting the

bias at an internal node, survival tree and forest models can still enjoy consistency

under suitable conditions. In particular, we demonstrate this property under two

cases: a finite-dimensional case where the splitting variables and cutting points
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are chosen randomly, and a high-dimensional case where the covariates are weakly

correlated. Our results also apply to an independent covariate setting, which is

commonly used in the random forest literature for high-dimensional sparse mod-

els. However, it may be unavoidable that the convergence rate depends on the

total number of variables in the failure and censoring distributions. Third, we

propose a new splitting rule that compares bias-corrected cumulative hazard func-

tions at each internal node. We show that the rate of consistency of this new

model depends only on the number of failure variables. We perform simulation

studies to confirm that the proposed bias-correction can substantially benefit the

prediction error.

Key words and phrases: Random Forests, Survival Analysis, Consistency, Adap-

tive Concentration, Bias Correction

1. Introduction

Random forest [9] is among the most popular and powerful machine learning

tools. The main advantage of tree-based [11] models is their nonparamet-

ric nature. Although there has been a surge of research on understanding

random forests, their theoretical properties have not been fully understood,

even in regression settings. [26] is one of the early attempts to connect

random forests to nearest neighbor predictors. Later on, a series of works

including [6, 5, 18] and [28] established theoretical results on simplified

tree-building processes or specific aspects of the model. More recently, [43]
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established consistency results based on an improved splitting rule crite-

ria; [39, 4] analyzed the confidence intervals induced from a random forest

model; [27] established connections with Bayesian variable selection in the

high-dimensional setting; [35] showed consistency of the original random

forests model on an additive model structure; and [40] studied the variance

component of random forests and established corresponding concentration

inequalities. For a comprehensive review of related topics, we refer to [7, 4].

In this paper, we focus on the theoretical properties of a particular type

of model, in which the outcomes are right-censored [17]. Censored survival

data frequently appear in biomedical studies when the actual clinical out-

come may not be directly observed due to early dropout or other reasons.

Many random forest models have been developed for survival outcomes.

This includes [21, 20, 23, 42, 36, 13], and many others. However, there are

few established theoretical results despite the popularity of these methods

in practice, especially in genetic and clinical studies. For a general review

of related topics, including single-tree based survival models, we refer to [8].

To the best of our knowledge, the only consistency result to date is given by

[22] who considered the setting where all predictors are categorical. Some

other results are established based on augmented outcomes which transform

the problem to a fully observed regression model [37].
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Our analysis provides insights into the consistency of survival forests

and trees in general settings. In particular, we investigate whether existing

methodologies enjoy consistency if the splitting rule is searched by compar-

ing the survival distributions of the two potential child nodes. The answer

is mixed because a biased selection of the splitting rule may occur if there

are marginal dependencies between the failure and censoring variables. We

show that this drawback could be overcome in at least two general settings:

a finite-dimensional case if the splitting rule is data-independent [5, 25],

and a high-dimensional case if the marginal failure distribution signal is

sufficiently large. However, the convergence rate may inevitably depend

on the total dimension of variables that are involved in both the failure

and the censoring models. This phenomenon occurs even when the covari-

ates are uniformly distributed, as long as the failure and censoring times

are not marginally independent. Such a result is surprising compared with

traditional parametric and semiparametric survival literature. However, it

demonstrates the complexity of random forest models due to the marginal

splitting nature.

Motivated by above results, we propose a new bias-correction proce-

dure that actively selects the best splitting variable at each internal node

without the influence of the censoring distribution. This establishes a con-
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nection with existing methodology developments such as [20] and [37] who

convert censored observations to fully observed ones through the inverse

probability of censoring weighting. However, our proposed splitting rule is

much more general in the sense that it compares the distributions of failure

time from the two potential child nodes, rather than focusing on the mean

differences. We further show that this new approach untangles the failure

and censoring distributions, and improves the rate of convergence of tree

and forest models so that the rate depends only on the number of impor-

tant variables that define the failure distribution. Simulation studies are

provided in Appendices to confirm that the proposed bias-correction can

substantially benefit the prediction error.

2. Survival tree and forest models

The essential element of tree-based survival models is recursive partitioning.

A d-dimensional feature space X is partitioned into terminal nodes. For

a single tree model, we denote the collection of these terminal nodes as

A = {Au}u∈U , where U is a set of indices, X =
⋃
u∈U Au and Au ∩Al = ∅

for any u 6= l. We also call A a partition of the feature space X . In a

traditional tree-building process [11], binary splitting rules are used. Hence

all terminal node are hyper-rectangles.
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Following standard notations in the survival analysis literature, let

Dn = {Xi, Yi, δi}ni=1 be a set of n i.i.d. copies of the covariates, observed

survival time, and censoring indicator, where the observed survival time

Yi = min(Ti, Ci), and δi = 1(Ti ≤ Ci). We assume that each Ti follows a

conditional distribution Fi(t) = pr(Ti ≤ t | Xi), where the survival func-

tion is denoted by Si(t) = 1−Fi(t), the cumulative hazard function (CHF)

Λi(t) = − log{Si(t)}, and the hazard function λi(t) = dΛi(t)/dt. The cen-

soring time Ci follows the conditional distribution Gi(t) = pr(Ci ≤ t | Xi),

where a non-informative censoring mechanism, Ti ⊥ Ci | Xi, is assumed.

In tree-based survival models, terminal node estimation is a crucial

part. For any node Au, this can be obtained through the Kaplan-Meier [24]

estimator for the survival function or the Nelson-Aalen [31, 1] estimator of

the CHF based on the within-node samples. Our focus in this paper is on

the following Nelson-Aalen estimator

Λ̂Au,n(t) =
∑

s≤t

∑n
i=1 1(δi = 1)1(Yi = s)1(Xi ∈ Au)∑n

i=1 1(Yi ≥ s)1(Xi ∈ Au)
, (2.1)

and the associated Nelson-Altshuler estimator [2] for the survival function

when needed:

ŜAu,n(t) = exp
{
− Λ̂Au,n(t)

}
.

A survival tree model yields a collection of doublets {Au, Λ̂Au,n}u∈U .
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In a survival forest model [23, 42], a set of B trees are fitted. Hence, a

collection of partitions {{Ab
u, Λ̂Abu,n}u∈Ub}

B
b=1 is constructed. To facilitate

better understanding, we provide a high-level outline (Algorithm 1 in Ap-

pendix S1) of a survival forest model.

3. Biasedness of splitting rules

3.1 Within-node estimation

To begin our analysis, we start by investigating the Kaplan-Meier (KM) and

the Nelson-Altshuler (NA) estimators of the survival function. The main

reason we revisit these classical methods is that these methods are wildly

used for terminal node estimation in fitted survival trees. The following

lemma bounds their difference through an exact inequality regardless of

the underlying data distribution. The proof follows mostly from [15] and is

given in the Appendices.

Lemma 1. Let ŜKM(t) and ŜNA(t) be the Kaplan-Meier and the Nelson-

Altshuler estimators, respectively, obtained using the same set of samples

{Yi, δi}ni=1. Then we have,

|ŜKM(t)− ŜNA(t)| < ŜKM(t)
4∑n

i=1 1(Yi ≥ t)
,

for any observed failure time point t such that ŜKM(t) > 0.
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3.2 A motivating example8

The above result suggests that calculating the difference between two

KM curves is asymptotically the same as using the NA estimator as long

as we only calculate the curve up to a time point where the sample size is

sufficiently large. For this purpose, Assumption 1 is always used throughout

this paper. Note that similar assumptions are commonly used in the survival

analysis literature, for examples, pr(T ≥ τ) > 0 in [17], and pr(C ≥ τ) >

0 in [30] for some maximum study follow-up time τ . Then, with large

probability, ŜNA(t) = ŜKM(t) +O(1/n) across all terminal nodes.

Assumption 1. There exists a fixed maximum follow-up time 0 < τ <∞

and a constant M ∈ (0, 1), such that

pr(Y ≥ τ | X = x) ≥M,

for all x ∈ X .

3.2 A motivating example

Noticing that the splitting rule selection process is essentially comparing the

survival curves computed from two potential child nodes, we take a closer

look at this process. Most existing analyses of the KM estimator assume

that the observations are i.i.d. [12, 19] or at least one set of the failure

times or censoring times are i.i.d. [41]. However, this is almost always not
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3.2 A motivating example9

true for tree-based methods at any internal node because both Ti’s and Ci’s

typically depend on the covariates. The question is whether this affects

the selection of the splitting variable. We first use a simulation study to

demonstrate this issue.

Consider the split at a particular node. We generate three random

variables: X(1), X(2) and X(3) from a multivariate normal distribution with

mean 0 and covariance matrix Σ, where all diagonal elements of Σ are 1,

and the nonzero off-diagonal elements are Σ12 = Σ21 = 0.8. The failure dis-

tribution is exponential with mean exp(−1.25X(1)−X(3) + 2). We consider

two censoring distributions for C: an exponential distribution with mean 2

for all subjects, i.e., independent of T ; and the second one is an exponential

distribution with mean equal to exp(−3X(2)). The splitting rule is searched

for by maximizing the log-rank test statistic between the two potential child

nodes {X(j) ≤ c,X ∈ A} and {X(j) > c,X ∈ A}, and the cutting point c

is searched on the range of the variable. In an ideal situation, one would

expect the best splitting rule to be constructed using X(1) with large prob-

ability, since it carries the most signal. This is indeed the case shown in

the first row of Table 1 for the i.i.d. censoring case, but not so much for

the dependent censoring case. The simulation is done with n = 1000 and

repeated 1000 times. While this only demonstrates the splitting process on
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3.3 Survival estimation based on non i.i.d. observations10

a single node, the consequence of this on the consistency of the entire tree

is much more involved since the entire tree structure can be altered by the

censoring distribution. It is difficult to draw a definite conclusion at this

point, but the impact of the censoring distribution is clearly demonstrated.

Table 1: Probability of selecting the splitting variable.

Censoring distribution X(1) X(2) X(3)

Gi identical 0.978 0.001 0.021

Gi depends on X
(2)
i 0.281 0.037 0.682

3.3 Survival estimation based on non i.i.d. observations

It now seems impossible to analyze the consistency without exactly quan-

tifying the within node estimation performance. We look at two different

quantities corresponding to the two scenarios used above. The first one is

an averaged CHF within any node A:

ΛA(t) =
1

µ(A)

∫
x∈A

Λ(t | x)dP(x), (3.2)

where P is the distribution of X, and µ(A) =
∫
x∈A dP(x) is the measure

of node A. Clearly, since in the first case, the censoring distribution is not

covariate dependent, we are asymptotically comparing ΛA(t) on the two
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3.3 Survival estimation based on non i.i.d. observations11

child nodes, which results in the selection of the first variable. This should

also be considered as a rational choice since X(1) contains more signal at

the current node.

In the second scenario, i.e., the dependent censoring case, the within-

node estimator Λ̂A,n(t) does not converge to the ΛA(t) in general, which can

be inferred from the following theorem. As the main result of this section,

Theorem 1 is interesting in its own right for understanding tree-based sur-

vival models, since it establishes a bound on the survival estimation under

independent but non-identically distributed samples, which is a more gen-

eral result than [41]. It quantifies exactly the estimation performance for

each potential child node, hence is also crucial for understanding splitting

rules in general.

Theorem 1. Let Λ̂n(t) be the Nelson-Aalen estimator of the CHF from a

set of n independent samples {Yi, δi}ni=1 subject to right censoring, where the

failure and censoring distributions (not necessarily identical) are given by

Fi’s and Gi’s. Under Assumption 1, we have for ε1 ≤ 2 and n > 4/(ε21M
4),

pr
(

sup
t<τ

∣∣∣Λ̂n(t)− Λ∗n(t)
∣∣∣ > ε1

)
< 16(n+ 2) exp

{−nM4ε21
1152

}
, (3.3)

where

Λ∗n(t) =

∫ t

0

∑
[1−Gi(s)]dFi(s)∑

[1−Gi(s)][1− Fi(s)]
. (3.4)
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3.3 Survival estimation based on non i.i.d. observations12

The proof is deferred to Appendix S2. Based on Theorem 1, if we

restrict ourselves to any node A, the difference between the within-node

estimator Λ̂A,n(t) and

Λ∗A,n(t) =

∫ t

0

∑
Xi∈A[1−Gi(s)]dFi(s)∑

Xi∈A[1−Gi(s)][1− Fi(s)]
(3.5)

is bounded above, where Λ∗A,n(t) is some version of the underlying true

cumulative hazard contaminated by the censoring distribution. Noting that

Λ∗A,n(t) also depends on the sampling pointsXi’s, we further develop Lemma

S5 in the Appendix to verify that Λ∗A,n(t) and its expected version Λ∗A(t)

are close enough, where

Λ∗A(t) =

∫ t

0

EX∈A[1−G(s | X)]dF (s | X)

EX∈A[1−G(s | X)][1− F (s | X)]
. (3.6)

It is easy to see that the difference between Λ∗A,n(t) and ΛA(t) will vanish

if the Fi’s are identical within a node A (a sufficient condition). Note that

this is what we are hoping for eventually at a terminal node.

Λ∗A,n(t) =

∫ t

0

∑
Xi∈A[1−Gi(s)]∑
Xi∈A[1−Gi(s)]

dF (s)

1− F (s)

(if Fi ≡ F for all Xi ∈ A)

=

∫ t

0

dF (s)

1− F (s)
=

1

µ(A)

∫
x∈A

∫ t

0

dF (s)

1− F (s)
dP(x) = ΛA(t). (3.7)

As we demonstrated in the simulation study above, comparing Λ̂A,n(t)

between two child nodes may lead to a systematically different selection
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of splitting variables than using ΛA(t) which is not known a priori. The

main cause of the differences between these two quantities is that the

NA estimator treats each node as a homogeneous group, which is typi-

cally not true. Another simple interpretation is that although the condi-

tional independence assumption T ⊥ C | X is satisfied, we have instead

T 6⊥ C | 1(X(j) < x) at an internal node. This tangling between the cen-

soring and failure distributions makes it a very challenging problem because,

at each internal node, we may only select one variable to split.

4. Consistency of survival tree and forest

It becomes apparent now that this bias plays an important role in the

asymptotic properties of survival tree and forest models. However, an im-

portant question we may ask is, whether this affects the consistency of

existing methodologies? To answer this question, we provide several analy-

ses of consistency in different settings. Noticing that difficulty arises when

the splitting rule is highly data-dependent, we first investigate the consis-

tency under random splitting rules and finite d (Section 4.2) to help our

understanding. An analog of this result for regression and classification set-

tings was proposed by [10], and further analyzed by [26, 6, 5, 3] and many

others. However, it is significantly more difficult when the splitting rule is
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4.1 Adaptive concentration bounds of survival trees and forests14

data-dependent, especially when the number of dimensions d is diverging

with n. Note that Λ̂n(t) is a biased estimator of the within node averaged

CHF, any marginal comparison splitting rule may falsely select a variable

involved in the censoring mechanism. Furthermore, any dependencies in

the high-dimensional setting may lead us to further falsely select a noise

variable because they will marginally carry signals. Hence, we investigate a

high-dimensional setting where the noise variables have weak dependencies

with the important variables (to be defined later). Under suitable condi-

tions and some necessary modifications to the tree-build process, we show

that a survival tree or forest model can still achieve consistency. However,

the rate may be affected by the censoring distribution. To establish these

results, we use the variance-bias breakdown, i.e., for any x,

∣∣∣Λ̂n(t | x)− Λ(t | x)
∣∣∣ ≤ ∣∣∣Λ̂n(t | x)− Λ∗n(t | x)

∣∣∣+ |Λ∗n(t | x)− Λ(t | x)| ,

and start by analyzing the variance component of a survival tree estimator.

4.1 Adaptive concentration bounds of survival trees and forests

We focus on quantifying the survival forest models from a new angle, namely

the adaptive concentration [40] of each terminal node estimator to the true

within-node expectation. In the sense of the variance-bias breakdown, the

goal of this section is to quantify a version of the variance component of
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4.1 Adaptive concentration bounds of survival trees and forests15

a tree-based model estimator. To be precise, with large probability, our

main results bound
∣∣Λ̂A,n(t) − Λ∗A,n(t)

∣∣ across all possible terminal nodes

in a fitted tree or forest. The adaptiveness comes from the fact that the

target of the concentration is the censoring contaminated version Λ∗A,n(t),

which is adaptively defined for each node A with the observed samples,

rather than as a fixed universal value. The results in this section have

many implications. Since this bound is essentially the variance part of the

estimator, we can then focus the bias for showing consistencies. Although

this may still pose challenges in specific situations, our later examples of

consistency provide a framework that is largely applicable to most existing

methods.

We start with some additional definitions and notations. Following our

previous assumptions on the underlying data-generating model, we observe

a set of n i.i.d. samples Dn. We view each tree as a partition of the

feature space, denoted A = {Au}u∈U , where the Au’s are non-overlapping

hyper-rectangular terminal nodes. We first define a valid survival tree and

forest estimators of the CHF. Roughly speaking, with certain constraints,

these are all the possible survival tree or forest estimators resulted from a

set of observed data. A tree partition A is {α, k}-valid [40] if it satisfies

two conditions: 1). For each splitting, the child node contains at least a
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4.1 Adaptive concentration bounds of survival trees and forests16

fraction α ∈ (0, 0.5) of the training samples in its parent node; and 2).

Each terminal node contains at least k training examples. We denote the

set of all {α, k}-valid tree partitions by Vα,k(D). In addition, we define the

collection {A (b)}Bb=1 as a valid forest partition if each of its tree partitions

are valid. We denote the set of all such valid forest partitions as Hα,k(D).

A valid survival tree or forest estimator is induced from the corresponding

valid set.

Definition 1 (Valid survival tree and forest). Given the observed data Dn,

a valid survival tree estimator of the CHF is induced by a valid partition

A ∈ Vα,k(Dn) with A = {Au}u∈U :

Λ̂A ,n(t | x) =
∑
u∈U

1(x ∈ Au)Λ̂Au,n(t), (4.8)

where each Λ̂Au,n(t | x) is defined by Equation (2.1). Furthermore, a valid

survival forest Λ̂{A(b)}B1 ,n is defined as the average of B valid survival trees

induced by a collection of valid partitions {A(b)}B1 ∈ Hα,k(Dn),

Λ̂{A(b)}B1 ,n(t | x) =
1

B

B∑
b=1

Λ̂A(b),n(t | x). (4.9)

We also define the censoring contaminated survival tree and forest,

which are asymptotic versions of the corresponding within-node average es-

timators of the CHF. Note that by Theorem 1, these averages are censoring

contaminated versions Λ∗A,n(t), but not the true averages ΛA(t).
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4.1 Adaptive concentration bounds of survival trees and forests17

Definition 2 (Censoring contaminated survival tree and forest). Given

the observed data Dn and A ∈ Vα,k(Dn), the corresponding CHF of the

censoring contaminated survival tree is defined as

Λ∗A ,n(t | x) =
∑
u∈U

1(x ∈ Au)Λ
∗
Au,n(t), (4.10)

where each Λ∗Au,n(t) is defined by Equation (3.5). Furthermore, let {A(b)}B1 ∈

Hα,k(Dn). Then the censoring contaminated survival forest is given by

Λ∗{A(b)}B1 , n
(t | x) =

1

B

B∑
b=1

Λ∗A(b), n
(t | x). (4.11)

Our adaptive concentration bound result considers the quantity

Λ̂A ,n(t | x)− Λ∗A ,n(t | x)

for all valid partitions A ∈ Vα,k(Dn). We first specify several regularity

assumptions. The first assumption is a bound on the dependence of the

individual features. Note that in the literature, uniform distributions are

often assumed [6, 5] on the covariates, which implies independence. To

allow dependency among covariates, we assume the following assumption,

which have also been considered in [40]. Without loss of generality, we

assume that covariates are distributed on [0, 1]d.

Assumption 2. Covariates X ∈ [0, 1]d are distributed according to a den-

sity function p(·) satisfying 1/ζ ≤ p(x) ≤ ζ for all x and some ζ ≥ 1.
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4.1 Adaptive concentration bounds of survival trees and forests18

We also set a restriction on the tuning parameter k, the minimum

terminal node size, which may grow with n and dimension d.

Assumption 3. Assume that k is bounded below so that

lim
n→∞

log(n) max{log(d), log log(n)}
k

= 0. (4.12)

Then we have the adaptive bound for our tree estimator in the following

theorem. The proof is collected in Appendix S3.

Theorem 2. Suppose the training data Dn satisfy Assumptions 1 and 2,

and the rate of the sequence (n, d, k) satisfies Assumption 3. Then all valid

trees concentrate on a censoring contaminated tree:

sup
t<τ, x∈[0,1]d,A ∈Vα,k(Dn)

∣∣∣Λ̂A ,n(t | x)− Λ∗A ,n(t | x)
∣∣∣

≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability larger than 1− 2/
√
n, for some universal constant M1.

The above theorem holds for all single tree partitions in Vα,k(Dn). Con-

sequently, we have a similar result for the forest estimator in Corollary S1

in Appendix S3.

Remark 1. In a moderately high-dimensional setting, i.e., d ∼ n, the rate is

log(n)/k1/2. In an ultra high-dimensional setting, for example, log(d) ∼ nϑ,
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4.1 Adaptive concentration bounds of survival trees and forests19

where 0 < ϑ < 1, the rate is close to nϑ/k1/2. The rate that k grows

with n cannot be too slow in order to achieve the bound in the ultra high-

dimensional setting. This is quite intuitive since if k grows too slowly then

we are not able to bound all possible nodes.

The results established in this section essentially address the variance

component in a fitted random forest. We chose not to use the true within-

node population averaged quantity Λ∗A(t) (see Equation 3.6), or its single

tree and forest versions as the target of the concentration. This is because

such a result would require bounded density function of the failure time

T . However, when f(t) is bounded, the results can be easily generalized to∣∣Λ̂A,n(t)− Λ∗A(t)
∣∣. Lemma 2 in Section 4.3 provides an analog of Theorem

1 in this situation.

With the above concentration inequalities established, we are now in a

position to discuss consistency results. We consider two specific scenarios:

a finite-dimensional case where the splitting rule is generated randomly,

and a high-dimensional case using the marginal difference of Nelson-Aalen

estimators as the splitting rule.
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4.2 Consistency under random splitting rules when d is finite20

4.2 Consistency under random splitting rules when d is finite

Assume that the dimension d of the covariates space is fixed and finite. At

each internal node we choose the splitting variable randomly and uniformly

from all covariates [5, 25]. When the splitting variable is chosen, we choose

the splitting point uniformly at random such that both child nodes contain

at least α proportion of the samples in the parent node. We will bound the

bias term

sup
t<τ

EX

∣∣∣Λ∗{A(b)}B1 , n
(t | X)− Λ(t | X)

∣∣∣ .
It should be noted that in Section 4.1, we did not treat the tree and forest

structures (A and {A(b)}B1 ) as random variables. Instead, they were treated

as elements of the valid structure sets. However, in this section, once a par-

ticular splitting rule is specified, these structures become random variables

associated with certain distributions induced from the splitting rule. When

there is no risk of ambiguity, we inherit the notation Λ̂A ,n to represent a

tree estimator, where the randomness of A is understood as part of the ran-

domness in the estimator itself. A similar strategy is applied to the forest

version. Before presenting the consistency results, we make an additional

smoothness assumption on the hazard function:

Assumption 4. For any fixed time point t, the CHF Λ(t | x) is L1-Lipschitz
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4.2 Consistency under random splitting rules when d is finite21

continuous in terms of x, and the hazard function λ(t | x) is L2-Lipschitz

continuous in terms of x, i.e., |Λ(t | x1) − Λ(t | x2)| ≤ L1||x1 − x2|| and

|λ(t | x1)−λ(t | x2)| ≤ L2‖x1−x2‖, respectively, where ‖·‖ is the Euclidean

norm.

We are now ready to state our main consistency results for the proposed

survival tree model. Theorem 3 provides the pointwise consistency result.

The proof is collected in Appendix S4.

Theorem 3. Under Assumptions 1–4, the proposed survival tree model with

random splitting rule is consistent, i.e., for each x ∈ [0, 1]d,

sup
t<τ

∣∣Λ̂A ,n(t | x)− Λ(t | x)
∣∣ = O

(√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

)
,

with probability at least 1− wn, where

wn =
2√
n

+ d exp
{
−
c22 log1/α(n/k)

2d

}
+ d exp

{
−

(1− c2)c3c24 log1/α(n/k)

2d

}
,

and c2, c4 ∈ (0, 1), c3 = (1− 2α)/8 and c1 = c3(1− c2)(1− c4)/log1−α(α).

Remark 2. The first part
√

log(n/k)[log(dk)+log log(n)]
k log((1−α)−1)

in the bound comes

from the concentration results and the second part (k/n)c1/d comes from

the bias. We point out that the optimal rate is obtained by setting k =

nc3/[c3+d log1−α(α)/2], and then the optimal rate is close to n−c3/[2c3+d log1−α(α)].

If we further assume that we always split at the middle point at each inter-
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4.3 Consistency under adaptive splitting rules22

nal node, then the optimal rate degenerates to n−1/(d+2) obtained by setting

k ∼ nd/(d+2).

The consistency result can be easily extended to survival forests with

B trees. Theorem 4 presents an integrated version, which can be derived

from Theorem 3. The proof is collected in Appendix S4.

Theorem 4. Under Assumptions 1-4, the proposed survival forest is con-

sistent, i.e.,

lim
B→∞

sup
t<τ

EX |Λ̂{A(b)}B1 ,n(t | X)− Λ(t | X)|

= O

(√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

+ log(k)wn

)
,

where wn is a sequence approaching to 0 as defined in Theorem 3, c2, c4 ∈

(0, 1), c3 = (1− 2α)/8 and c1 = c3(1− c2)(1− c4)/ log1−α(α).

4.3 Consistency under adaptive splitting rules

We have so far established consistency results for both survival trees and

forests for finite dimension d. In this section, we allow the dimension d to

go to infinity with sample size n while the covariates are possibly corre-

lated. We note that this is not a commonly used setting in the literature

because it can be difficult to control the marginal distribution of a noise

variable. We first provide several definitions. We assume that there are
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4.3 Consistency under adaptive splitting rules23

d0 important variables involved in the failure time distribution, and denote

MF the set of their indices, hence MF ⊂ {1, . . . d}. Precisely, we have

T ⊥ X|XMF
. The number of features involved in either the failure time

and censoring time distributions is d0 + d1, where d0 and d1 are fixed, and

denoted MFC their indices. However, this does not imply that there are

only d1 variables for the censoring distribution because the failure variables

and censoring variables may share some common indices. For example, age,

as a commonly used demographic variable, can be informative for both the

clinical outcome of interest (failure) and the lost to follow-up (censoring).

However, splitting such variables is necessary as long as they are involved

in the failure distribution. The splits that we may want to avoid is on the

variables in the set MC defined as MFC \MF , making d1 = |MC |. However,

our later analysis indicates that this may not be avoidable because of the

biasedness caused by censoring. Lastly, we define the set of noise variables’

indices as MN = {1, . . . d} \MFC . We make the following assumption on

the weak dependencies between noise variables and variables in MFC .

Assumption 5. We assume that the conditional distribution of the failure

and censoring covariates XMFC
has weak dependencies on any univariate
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noise variable, in the sense that for some constant γ > 1, we have

γ−1 <
p(XMFC

= x|X(j) = x1)

p(XMFC
= x|X(j) = x2)

< γ,

for any x1, x2 ∈ [0, 1], (d0 + d1)-dimensional vector x and any j ∈MN .

Assumption 5 relaxes the commonly used independent covariate as-

sumption in the literature [5, 43, 35, 38]. However, this poses significant

difficulties when evaluating the marginal signal carried by a noise variable,

meaning that the difference between the two potential child nodes may not

be 0. A large threshold is necessary to prevent the noise variables from en-

tering the model, as shown in the later results. However, as the correlation

reduces to 0, i.e., γ = 1, the threshold will naturally degenerate to 0. We

further need an assumption on the effect size of the failure variable.

Assumption 6. (Marginal signal of the failure distribution) Let A be any

internal node, and j ∈ MF be an index of a variable that has never been

split, i.e., the range of X(j) in node A is [0, 1]. Let A+
j and A−j be defined

as A+
j (c) = {X : X(j) ≥ c} and A−j (c) = {X : X(j) < c}, respectively. We

further define

`+(j, t, c) =

∫ t

0

EX∈A+
j (c)

f(s | X)

EX∈A+
j (c)

[1− F (s | X)]
ds,

`−(j, t, c) =

∫ t

0

EX∈A−
j (c)f(s | X)

EX∈A−
j (c)[1− F (s | X)]

ds.
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Then there exists a time point t0 ∈ [0, τ ], a constant c0 ∈ (0, 1), and mini-

mum effect size ` > 2(γ2 − γ−2)τL/M2, such that

M`+(j, t0, c0)−M−1`−(j, t0, c0) > `, if `+(j, t0, c0) > `−(j, t0, c0),

or M`−(j, t0, c0)−M−1`+(j, t0, c0) > `, if `+(j, t0, c0) < `−(j, t0, c0),

where τ and M are defined in Assumption 1, γ is defined in Assumption 5,

and L is an upper bound of f(t|x) for all x ∈ [0, 1]d.

This assumption can be interpreted as the following. First, `+(j, t, c)

and `−(j, t, c) are the averaged CHFs on the left and right-hand side, respec-

tively, of a split at the jth variable. The constant M and its reciprocal can

be understood as the minimum and maximum contamination, respectively,

of the censoring distribution on these CHFs. The assumption requires that

if the difference of these contaminated versions is sufficiently large at some

time point t0 and some cut-point c0. Note that M is a lower bound of

pr(C ≥ τ | X = x), this essentially bounds below the signal size regardless

of any dependency structures between C and T . However, in some trivial

cases, such as when the Gi’s are identical, the constant M can be removed

from the assumption due to the independence between T and C. A simpli-

fied version will be provided in Assumption 7 in Section 5. Furthermore,

` can be an arbitrarily small constant if γ = 1, which is essentially the
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independent covariates case.

Another important observation of this assumption is that t0 can be

arbitrary. Hence, we essentially allow the CHFs of different subjects to

cross each other. As a comparison, we note that in many popular survival

models, such as the Cox proportional hazard model, the CHF is a monotone

function of X on the entire time domain. Hence the survival curve of any

subject can only be completely above or below that of another subject.

However, when the survival curves cross each other, a log-rank test may not

be effective [17, 16]. When we incorporate the splitting rule that detects

the maximum differences on [0, τ), our model is capable of detecting non-

monotone signals of the CHF as a function of both X and t, making our

approach more powerful than the traditional log-rank test splitting rule.

Finally, to make a splitting rule concrete, we provide Algorithm 2 in

Appendix S1, which marginally compares the estimated CHF over all time

points and uses the difference to select the best split. Based on this algo-

rithm, Lemma S6 in Appendix S5 shows that our d dimensional survival

forest is equivalent to a (d0 + d1) dimensional survival forest with probabil-

ity larger than 1−3/
√
n. This means that with a large probability, we shall

never split on the noise variable set MN . We highlight here that Λ∗A,n(t) is

an essential tool to prove Lemma S6. The intuition here is that when the
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failure distribution doesn’t depend on the variable j, the quantity

∫ t

0

EX∈A+
j (x)

[1−G(s | X)]dF (s | X)

EX∈A+
j (x)

[1−G(s | X)][1− F (s | X)]

−
∫ t

0

EX∈A−
j (x)[1−G(s | X)]dF (s | X)

EX∈A−
j (x)[1−G(s | X)][1− F (s | X)]

is bounded by a small constant under weak dependency. However, this is

quantity will degenerate to 0 as long as the dependency vanishes, i.e., γ =

1, since dF (s|X)/[1 − F (s|X)] separates regardless of what the censoring

distribution is. The proof is indeed beautiful and neat, which is deferred to

Appendix S5.

Notice that Λ∗A,n(t) is a sample version of the asymptotic distribution

of the terminal node A. In Lemma 2, we show the bound of the difference

of Λ∗A,n(t) and its integrated version Λ∗A(t) across all valid nodes A, where

Λ∗A(t) is as defined in Equation (3.6). The proof is given in Appendix S5.

Lemma 2. Under Assumptions 1-3 and further assume that the conditional

density function f(t | x) of the failure time T is bounded by L for all

x ∈ [0, 1]d. The difference between Λ∗A ,n(t) and Λ∗A (t) is bounded by

sup
t<τ, x∈[0,1]d,A ∈Vα,k(Dn)

∣∣Λ∗A ,n(t | x)− Λ∗A (t | x)
∣∣

≤ M2

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,
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with probability larger than 1− 1/
√
n.

Based on Lemma S6 provided in Appendix S5, we essentially only split

on (d0 +d1) dimensions with probability larger than 1−3/
√
n on the entire

tree. The consistency holds from Theorem 3. The following result shows the

consistency of the proposed survival forest. The proof is almost identical

to Theorem 4.

Theorem 5. Under Assumptions 1-6, the proposed survival tree using the

splitting rule specified in Algorithm 2 is consistent, i.e., for any x,

sup
t<τ
|Λ̂A,n(t | x)− Λ(t | x)|

= O

(√
log(n/k)[log{(d0 + d1)k}+ log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d0+d1

)
,

with probability at least 1− wn, where

wn =
3√
n

+ (d0 + d1)
[

exp
{
−
c22 log1/α(n/k)

2(d0 + d1)

}
+ exp

{
−

(1− c2)c3c24 log1/α(n/k)

2(d0 + d1)

}]
,

c2, c4 ∈ (0, 1), c3 = (1 − 2α)/8 and c1 = c3(1 − c2)(1 − c4)/ log1−α(α).

Consequently, the proposed survival forest is consistent, i.e.,

lim
B→∞

sup
t<τ

EX |Λ̂{A(b)}B1 ,n(t | X)− Λ(t | X)|

= O

(√
log(n/k)[log{(d0 + d1)k}+ log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d0+d1 + log(k)wn

)
.
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Although we have developed a result where d can grow exponentially

fast with n in this section, the splitting rule implemented was not completely

the same as practice because it essentially checks only the signal where

the candidate variables have never been used. This is made possible with

Assumption 6 that the difference between two potential child nodes resulted

from X(j) < c0 versus X(j) ≥ c0 is sufficiently large. Once a variable is

used, it will be automatically included as a candidate in subsequent splits.

The idea is similar to the protected variable set used in [43], where the

protected set serves as the collection of variables that have been used in

previous nodes.

Remark 3. We provide a consistency result for survival trees and forests

under weak dependency framework. We highlight that our results hold

naturally if X is uniformly distributed with ζ = γ = 1. Notice that when

variables are uncorrelated, our results are still meaningful and construc-

tive: the biasedness is not due to correlated variables but the entanglement

between failure time and censoring time marginally. For example, if cen-

soring time shares one common variable with failure time, then all other

censoring variables also play a role in the limiting distribution, so there is

no guarantee to split only on failure variables.
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5. A bias-corrected survival forest

Recall that in Section 3, we investigated the estimation bias in the compari-

son of two potential child nodes. This is caused by ignoring the within-node

heterogeneity of the censoring distribution while it is entangled with the fail-

ure distribution. A closer look at Equation (3.5) motivates us to perform

a weighted version of the Nelson-Aalen estimator to correct this bias and

estimate the true within-node averaged CHF. Hence, we consider

Λ̃A,n(t) =
∑

s≤t

∑n
i=1 1(δi = 1)1(Yi = s)1(Xi ∈ A)/[1− Ĝ(s|Xi)]∑n

i=1 1(Yi ≥ s)1(Xi ∈ A)/[1− Ĝ(s|Xi)]
, (5.13)

where Ĝ(s|Xi) is an estimated conditional censoring distribution function.

Note that this estimator resembles a form of the inverse probably weight-

ing strategy [33], which is an extensively studied technique in the survival

analysis and missing data literature [32]. There have been many different

forms of inverse probably weighted estimators under a variety of contexts.

For example, [20] uses δi/(1 − Ĝ(Yi|Xi)) as the subject-specific weight to

fit regression random forests. One can also transform the censored obser-

vations into fully observed ones using, e.g., [34], and then fit a regression

model with the complete data [29, 36, 37]. Similar ideas have also been used

for imputing censored outcomes [42] when learning an optimal treatment

strategy [14].
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However, our proposal is fundamentally different from these existing

methods. We estimate and compare an inverse probably weighted hazard

function using weight δi/(1 − Ĝ(s|Xi)) and repeatedly performing this at

each internal node. A key observation is that the comparison is over the

entire domain of the survival time instead of fitting regression forests based

on complete observations. This is a unique advantage because the distri-

bution function contains richer information than the within-node means.

This makes our approach more sensitive for detecting differences between

two potential child nodes at all quantile levels of the survival time. It also

advocates the goal of a typical survival analysis model, where the survival

function is the target of interest rather than the expected survival time.

The intuition has a close connection with the sup-log-rank test statistic

[17, 16], which can be used to detect any distributional difference of T of

the two potential child nodes. Furthermore, with the following modified

algorithm, we can achieve an improved convergence rate that depends only

the size of MF .

Algorithm 2 can be modified accordingly to incorporate this new pro-

cedure. In particular, at each internal node A, we use the weighted CHF

estimator Λ̃A,n(t) defined in Equation (5.13). We then pick the splitting

point c̃ with the rule such that both child nodes contain at least proportion
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α of the samples at A:

c̃ = arg max
c

∆2(c),

where ∆2(c) = maxt<τ
∣∣Λ̃A+

j (c),n
(t) − Λ̃A−

j (c),n(t)
∣∣, A+

j (c) = {X : X(j) ≥ c},

and A−j (c) = {X : X(j) < c}, X(j) is the j-th dimension of X.

Note that the threshold of ∆2(c) in this bias-corrected version is the

same as the one used for ∆1(c) in Algorithm 2. The intuition is that after

removing the censoring bias, variables in MC play the same role as noise

variables in MN . In addition, the signal size Assumption 6 can be relaxed

to the following.

Assumption 7. (Marginal signal of the failure distribution) Let `+(j, t0, c0),

`−(j, t0, c0) and effect size l be as defined in Assumption 6. Then, there ex-

ists a time point t0 and a cutting point c0 such that, for any j ∈MF ,∣∣∣∣`+(j, t0, c0)− `−(j, t0, c0)

∣∣∣∣ > `.

Note that this is essentially removing the censoring contaminated part

(M and its reciprocal) from Assumption 6. Of course, this is at the cost

of plugging-in a consistent estimator of the censoring distribution G to

correct the bias. On the other hand, we need an additional assumption on

the dependency structures.
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Assumption 8. We assume that the conditional distribution of the failure

and censoring covariates XMFC
has weak dependencies on any univariate

censoring variable, in the sense that for constant γ > 1, we have

γ−1 <
p(XMFC\{j} = x|X(j) = x1)

p(XMFC\{j} = x|X(j) = x2)
< γ,

for any x1, x2 ∈ [0, 1], (d0 + d1 − 1)-dimensional vector x and any j ∈MC.

This is an analog of Assumption 5 to further prevent the censoring

variables from carrying strong marginal signals due to correlations. It will

again degenerate to the commonly used independent covaraite case when

γ = 1. Finally, we show that consistency can be established based on our

new model fitting procedure, with convergence rate depends only on the

number of variables in MF .

Theorem 6. Under Assumptions 1-5, 7 and 8, assuming that Ĝ in Equa-

tion (5.13) is a consistent estimation of the censoring distribution, the

proposed bias-corrected survival tree is consistent, i.e., for any x,

sup
t<τ
|Λ̂A ,n(t | x)− Λ(t | x)|

= O

(√
log(n/k)[log(d0k) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d0

)
,

with probability at least 1− wn, where

wn =
3√
n

+ d0 exp
{
−
c22 log1/α(n/k)

2d0

}
+ d0 exp

{
−

(1− c2)c3c24 log1/α(n/k)

2d0

}
,
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c2, c4 ∈ (0, 1), c3 = (1 − 2α)/8 and c1 = c3(1 − c2)(1 − c4)/ log1−α(α).

Consequently, the proposed survival forest is consistent, i.e.,

lim
B→∞

sup
t<τ

EX |Λ̂{A(b)}B1 ,n(t | X)− Λ(t | X)|

= O

(√
log(n/k)[log(d0k) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d0 + log(k)wn

)
.

In Appendix S7, we perform simulation studies to show that by ac-

tively correcting the bias, the prediction error can be significantly reduced.

Interestingly, we want to highlight that as can be seen from simulations,

the biasedness is mainly caused by the splitting rather than terminal node

estimation. This is intuitive and in line with our theory that the splitting

bias-correction procedure can enjoy a potentially faster convergence rate

than the non-bias-corrected version. One might not expect a good predic-

tion if trees are partitioned inefficiently regardless of what kind of terminal

node estimation is used. After the tree is constructed, there is not much

room to correct the bias if previous splits were chosen on noise or censoring

variables.

6. Discussion

In this paper, we provided insights into survival forest and tree models

and developed several fundamental results analyzing the impact of split-
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ting rules. We first investigated the within-node Nelson-Aalen estimator

of the CHF and established a concentration inequality for independent but

non-identically distributed samples. By introducing a new concept called

the censoring contamination, we can exactly quantify the bias of existing

splitting rules. Based on this, we also developed a concentration inequal-

ity that bounds the variance component of survival trees and forests. We

further analyzed in detail how such bias can affect consistency. In particu-

lar, we show that for a commonly used marginal comparison splitting rule

strategy, the convergence rate depends on the total number of variables

involved in the failure and censoring distribution. However, by appropri-

ately correcting the bias, the convergence rate depends only on the number

of failure variables. Essentially, the new bias correction procedure can be

understood as untangling the failure and censoring distributions.

In addition to analyzing this entanglement, our result is based on a weak

dependency structure, which bounds the marginal signal of any noise vari-

able. This is a generalization of the commonly used independent covariate

setting in the literature. A univariate split has a disadvantage when deal-

ing with noise variables because if they are systematically selected in the

splitting rule, the convergence rate will suffer. We believe that similar weak

dependency assumptions are inevitable, because otherwise, any correlation
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structure may carry signals into the noise variables. It would be interest-

ing to investigate whether more advanced splitting rules can overcome this

drawback.
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