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Abstract: Empirical likelihood is a general non-parametric inference methodology.

It uses likelihood principle in a way that is analogous to that of parametric like-

lihoods. In a wide range of applications the methodology was shown to provide

likelihood ratio statistics that have limiting chi-square distributions and yield a

nonparametric version of Wilks theorem. Amongst recent extensions of empirical

likelihood are the analysis of censored data, longitudinal data and semi-parametric

regression models. Wilks theorem remains true in some, but not in others. This

motivates our comparison of extended empirical likelihood methods. We evaluate

their relative optimality by comparing the confidence regions provided by inverting

the likelihood ratio tests. We show that those extension methods with the likeli-

hood ratio statistic observing the Wilks theorem provide the smallest confidence

regions. Specific examples are provided for the case of censored data analysis and

estimating equations involving nuisance parameters.

Key words and phrases: Empirical likelihood, likelihood ratio, scaled chi square

distribution, Wilks confidence region.

1. Introduction

Empirical likelihood is a general non-parametric inference method using like-

lihood principle in a way that is analogous to that of parametric likelihoods. Since

its introduction by Owen (1988, 1990), the methodology has been extended to

the analysis of censored data (Li, Li and Zhou (2005)), longitudinal data (e.g.,

Wang, Qian and Carroll (2010)) and semi-parametric regression model (e.g., Shi

and Lau (2000)). In a wide range of applications, as outlined in Owen (2001),

empirical likelihood ratio statistics have been shown to have limiting chi-square

distributions. This property remains true for some recent extended methods but

not for others. We discuss the relative optimality of extended methods. Specific

examples are described in Section 3.

We focus our attention on extensions of the empirical likelihood method that

have the likelihood function maximized at the same location, thus yielding equiv-
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alent maximum empirical likelihood estimators, but provide different likelihood

ratio statistics. We discuss the relative optimality of the methods by comparing

the confidence regions provided by inverting the likelihood ratio tests. We show

that the extended empirical likelihood that yields the likelihood ratio statistic

observing the Wilks theorem provides the smallest confidence region.

The remainder of this paper proceeds as follows. Section 2 formally defines

a set-up where multiple empirical likelihood methods can be compared. The

section also provides asymptotic results for the comparison of the corresponding

confidence regions. Section 3 describes specific examples for the cases of censored

data analysis and estimating equations involving nuisance parameters. Section 4

provides empirical results. All the proofs are deferred to the Appendix.

2. Comparison of Various Empirical Likelihoods via Its Confidence

Regions

Specifying extended empirical likelihood requires details. For example, var-

ious ways of constructing the likelihoods are available for censored data and

different extended empirical likelihoods are specified. We defer presentation of

specific examples including censored data case to section 3 and provide general

results in this section.

Given a random sample Zn = {Zi}ni=1 with a common cumulative distri-

bution function F0 and Z1 ∈ Rk, we consider an (extended) empirical likeli-

hood defined for some discrete cumulative distribution function F (denoted by

EL(Zn, F )). We subsequently define the maximizer Fn=argmaxF logEL(Zn, F ).

The empirical likelihood gives rise to the empirical likelihood ratio test for a finite

parameter θ = T (F ) ∈ Rp with the test statistic

−2 logELRn(θ) = −2

{
max
F∈F

logEL(Zn, F )− logEL(Zn, Fn)

}
,

where F is a set of discrete cumulative distribution functions that satisfy the

constraint T (F ) = θ. The true value of the parameter is given as θ0 = T (F0),

and the maximum empirical likelihood estimator is θ̂n = T (Fn).

We invert the likelihood ratio test and obtain a confidence region Cn =

{ θ − 2 logELRn(θ) ≤ c} , where the critical value c is chosen according to

the (asymptotic) distribution of −2 logELRn(θ) under the null hypothesis for

some desired confidence level. Under some regularity conditions the asymptotic

distribution under the null hypothesis is

n1/2(θ̂n − θ0) → U, (2.1)
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−2 logELRn(θ0) = n(θ̂n − θ0)>V −1(θ̂n − θ0) + op(1) ,

where U is a p-variate random variable with U ∼ Np(0,W ), and W and V are

p × p (semi-)positive definite matrices. Without loss of generality we consider

two methods that provide the same maximum empirical likelihood estimators,

θ̂1n = θ̂2n, but different likelihood ratio statistics ELR1n(θ) and ELR2n(θ). We

suppose that the asymptotic results in (2.1) hold with V = V1 and V = V2, and

WV −11 = I and WV −12 6= I for ELR1n(θ) and ELR2n(θ), respectively. By the

results of Hjort, McKeague and Keilegom (2009) and Qin and Lawless (1994), the

empirical likelihood with V = V1 admits a chi-square with p degrees of freedom

as the limiting distribution of −2 logELR1n(θ), whereas the empirical likelihood

with V = V2 admits a limiting distribution characterized by weighted sum of p

independent chi-squares of degree of freedom 1. This distribution is often called

“the scaled chi square distribution”, especially in the case of p = 1 (Wang and

Jing (2001), Wang and Li (2002), Ren (2008)).

We consider the confidence regions with the two methods at the same con-

fidence level as

C1n = { θ − 2 logELR1n(θ) ≤ c1} , C2n = { θ − 2 logELR2n(θ) ≤ c2} ,

where the critical values c1 and c2 are appropriately chosen by the limiting

distributions. C1n and C2n are centered at the same value in the sense that

−2 logELR1n(θ̂n) = −2 logELR2n(θ̂n) = 0 where θ̂n denotes the common max-

imum empirical likelihood estimator.

Theorem 1. Assume regularity conditions under which the results in (2.1) holds

for ELR1n(θ) and ELR2n(θ). Given a confidence level 1 − αn ∈ (0, 1) with

αn → 0, there exist N such that for n > N we have

V ol(C1n)

V ol(C2n)
< 1,

where V ol(C) for any measurable set C in Rp is V ol(C) =
∫
Rp I[t∈C]µ(dt) with

µ the Lebesgue measure in Rp.

Theorem 1 implies that the empirical likelihood method that provides the

likelihood ratio statistic which is only incompletely self-studentizing is not opti-

mal.

Remark 1. In several papers (e.g., Wang and Jing (2001), Wang and Li (2002)),

it is suggested that one can adjust the empirical likelihood ratio of type

−2 logELR2n by multiplying by a factor that turns the asymptotic null dis-

tribution into a regular chi square, and may even improve the performance of
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the resulting confidence regions. While the adjustment may improve the level

of confidence of the resulting confidence region, it is clear that if the multi-

plying factor is (asymptotically) a constant and does not depend on θ, then

the shape and orientation of the resulting confidence region is the same as

before. In later examples, we set the confidence level by simulating the null

distribution, eliminating the need for the adjustment. To achieve optimality,

the multiplying factor must depend on θ and be logELR1n(θ)/ logELR2n(θ) =

(θ̂ − θ0)>V −11 (θ̂ − θ0)/{(θ̂ − θ0)>V −12 (θ̂ − θ0)}+ op(1). Computing this factor is

equivalent to computing the statistic −2 logELR1n, if not more difficult.

3. Extended Empirical Likelihoods

In this section we present concrete examples of extended methods that pro-

vide likelihood ratio statistics that do not observe the non-parametric version of

the Wilks theorem. In each of these examples, the construction of the likelihood

does not match the structure of data and hence ill-constructed likelihoods pro-

vide the likelihood ratio statistics that are only incompletely self-studentizing.

For contrast, we provide a properly defined empirical likelihood that does observe

the Wilks theorem.

3.1. Analysis of estimating equations involving nuisance parameters

We suppose that the unknown parameters θ ∈ Rp is related to the com-

mon cumulative distribution function F0 via a p-variate vector of estimating

functions involving finite-dimensional nuisance parameters ψ ∈ Rq, m(·, θ, ψ),

so E{m(Z1, θ0, ψ0)} = 0 for the true values θ0 and ψ0. We also suppose a

q-variate vector of estimating functions h(·, θ, ψ) exists that defines the true pa-

rameter values θ0 and ψ0 uniquely as a solution to the estimating equations,

E{m(Z1, θ0, ψ0)} = 0 and E{h(Z1, θ0, ψ0)} = 0 . We consider the following em-

pirical likelihood jointly for θ and ψ;

ELn(θ, ψ) = max

(
n∏
i=1

wi

n∑
i=1

wi

(
m(Zi, θ, ψ)

h(Zi, θ, ψ)

)
= 0 ,

n∑
i=1

wi = 1 , 0 ≤ wi

)
,

where wi denotes the point mass assigned to the i−th observation Zi. Without

the constraints this likelihood is maximized by wi = n−1, i = 1, . . . , n, and the

maximum empirical likelihood estimator (θ̂n, ψ̂n) is given by the solution to the

equations n−1
∑n

i=1m(Zi, θ, ψ) = 0 and n−1
∑n

i=1 h(Zi, θ, ψ) = 0 .

Two methods have been proposed for the inference of θ alone.

Qin and Lawless (1994) used the profile likelihood EL1n(θ) = maxψ ELn(θ, ψ) ,
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while others used the so-called plug-in method (Hjort, McKeague and Keilegom

(2009)) with the likelihood

EL2n(θ) = max

(
n∏
i=1

wi

n∑
i=1

wim(Zi, θ, ψ̃) = 0 ,

n∑
i=1

wi = 1 , 0 ≤ wi

)
,

where ψ̃ is a
√
n−consistent estimator, so that E{m(Zi, θ0, ψ̃)} = 0. Without

externally given ψ̃ available, a common choice is the maximum empirical likeli-

hood estimator ψ̂n. With this choice, the plug-in empirical likelihood has θ̂n as

the maximum empirical likelihood estimator and maxθ EL2n(θ) =
∏n
i=1 n

−1, as

does the profile likelihood method. The likelihood ratio statistics are given by

ELR1n(θ) =
EL1n(θ)∏n
i=1 n

−1 , ELR2n(θ) =
EL2n(θ)∏n
i=1 n

−1 . (3.1)

Theorem 2. Suppose

n1/2

(
θ̂n − θ0
ψ̂n − ψ0

)
−→Np(0,Σ) ,

in distribution, where Σ = {S12S−111 S21}−1 with S12=S>21=E

(
∂m/∂θ ∂m/∂ψ

∂h/∂θ ∂h/∂ψ

)
,

S11 = E

(
mm> mh>

hm> hh>

)
, and the expectations taken at θ = θ0 and ψ = ψ0. Also

suppose that for any ψ̃ with ||ψ̃−ψ0|| = Op(n
−1/2), n−1

∑n
i=1m(Zi, θ0, ψ̃)m>(Zi,

θ0, ψ̃) → E (mm>) . If Σ(jk), j, k = 1, 2, denote the blocks of Σ that correspond to

θ and ψ, then, (2.1) holds for both −2 logELR1n(θ0) and −2 logELR2n(θ0) with

U ∼ Np(0,Σ(11)), W = V1 = Σ(11), V2 =

[
E

(
∂m

∂θ

)>
{E (mm>)}−1E

(
∂m

∂θ

)]−1
.

Furthermore, −2 logELR2n(θ0)−→
∑p

j=1 cjξj in distribution, where ξj are inde-

pendent chi-squared distributed random variables with degree of freedom 1 and

c1, . . . , cp are the eigenvalues of V2W
−1.

The weighted χ2 asymptotic results stems from the ill-construction of the

likelihood: the likelihood of EL2n(θ) takes the same form as that of Owen’s

likelihood for the case of independent data, whereas m(Zi, θ, ψ̂n), i = 1, . . . , n,

are not independent as they involve the same ψ̂n.

3.2. Censored data analysis

We suppose that {Zi}ni=1 = {(Ti, δi)}ni=1 where (Ti, δi) denote right censored

observations from lifetime variables {Yi} with a common cumulative distribution
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function F0 subject to the random censoring:

Ti = min(Yi, Ci) and δi = I[Yi≤Ci] for i = 1, . . . , n .

The censoring variable Ci are assumed independent of the Yi with a cumulative

distribution function G0. We suppose the true value θ0 of an unknown parameter

θ ∈ Rp is related to F0 via estimating equations such that

E{g(Yi)} = θ0 ,

where g = (g1, . . . , gp) are p functions. We examine three empirical likelihood

methods that have been proposed for the inference of θ.

Censored Likelihood Method: The first method uses the empirical likelihood

defined for the censored data. Kaplan and Meier (1958), Owen (2001), and

others have defined the empirical likelihood of the censored data {Zi}ni=1 for

some cumulative distribution function F as

EL(Zn, F ) =

n∏
i=1

{∆F (Ti)}δi
 ∑
j:Tj>Ti

∆F (Tj)


1−δi

,

where ∆F (t) = F (t+)−F (t−) is the jump of F at t or a probability mass assigned

to the point t. As in the case of uncensored case, this assumes a discrete F (·)
with possible jumps only at the observed times. With wi = ∆F (Ti), i = 1, . . . , n,

this likelihood can be written in term of the jumps and the log likelihood is

logEL1n(F ) =

n∑
i=1

δi logwi + (1− δi) log

n∑
j=1

wjI[Tj>Ti]

 , (3.2)

where I[·] denotes an indicator function. The likelihood is maximized at the

Kaplan-Meier estimator (Kaplan and Meier (1958)) with wi = ∆F̂KM (Ti), i =

1, . . . , n. Using the empirical likelihood of the censored data in (3.2), Zhou (2011)

proposed the empirical likelihood for θ as

EL1n(θ)=max
wi


n∏
i=1

wδii

 n∑
j=1

wjI[Tj>Ti]

1−δi
n∑
i=1

wig(Ti)=θ,

n∑
i=1

wi=1, 0 ≤ wi

 .

The maximum empirical likelihood estimator θ̂n is given by
n∑
i=1

g(Ti)∆F̂KM (Ti) = θ̂n. (3.3)

The empirical likelihood ratio statistic is, accordingly, given as
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−2 logELR1n(θ) = −2 log

{
EL1n(θ)

EL1n(θ̂n)

}
.

Synthetic data and uncensored empirical likelihood method: We have θ

defined as Eg(Yi) = θ. The following lemma is easily proved and motivates this

method.

Lemma 1. For any function g(·) such that Eg(Yi) is well defined, if Xi =

{g(Ti)δi}/{1 − G0(Ti)} , where G0(·) is the cumulative distribution function of

censoring variable Ci, then, Eg(Yi) = E (Xi) .

If G0 were known, {Xi}ni=1 or the synthetic data would be completely ob-

served and the following empirical likelihood could be considered:

EL2n(θ) = max
wi

(
n∏
i=1

wi

n∑
i=1

wiXi = θ ,

n∑
i=1

wi = 1 , 0 ≤ wi

)
.

The first and second methods utilize different likelihoods. EL1n(θ) is based

on the likelihood of censored data {(Ti, δi)}ni=1 with wi denoting the point mass

of a discrete cumulative function of Yi, while EL2n(θ) is based on the likelihood

of completely observed {Xi}ni=1 with wi denoting the point mass of a cumula-

tive distribution function of Xi, assuming the knowledge of the censoring time

distribution G0.

Usually G0(t) is not known, and the Xi are not available. An alternative

method based on the synthetic data uses an estimator Ĝ(t), often the Kaplan-

Meier estimator ĜKM , and defines the likelihood as

EL∗2n(θ) = max
wi

(
n∏
i=1

wi

n∑
i=1

wiX
∗
i = θ ,

n∑
i=1

wi = 1 , 0 ≤ wi

)
,

where X∗i = {g(Ti)δi}/{1− ĜKM (Ti)} . Here, however, the X∗i are not indepen-

dent.

Since ĜKM (t) is uniformly consistent for G0(t), the mean of the sequence

{X∗i } is still asymptotically same as Eg(Y ), but the variance is different from

the variance of Xi. Under some regularity conditions, we can show that, as

n → ∞,
√
n(X̄ − θ0)−→N(0, σ21) and

√
n(X̄∗ − θ0)−→N(0, σ22) in distribution

with σ21 > σ22, for g(·), a scalar function (p = 1). This result similarly holds

with p > 1. We refer to Srinivasan and Zhou (1994) for the calculation of the

asymptotic variances or variance-covariance matrix. Like the plug-in method, the

second synthetic data method uses the empirical likelihood method developed for

iid sequences, but applies it to the sequence {X∗i } that is not iid.
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If we use the Kaplan-Meier estimator ĜKM (t) in this case, the empiri-

cal likelihood EL∗2n(θ) is maximized when θ takes the value θ̂n as (3.3), since

∆F̂KM (Ti) = δi/
[
n{1− ĜKM (Ti)}

]
. Therefore, even though the likelihoods

EL1n(θ) and EL∗2n(θ) look different, they are maximized at the same F , and

thus the confidence regions obtained by inverting the tests, are centered at the

same point θ̂n. Accordingly the likelihood ratio statistic is given as

−2 logELR∗2n(θ) = −2 log

{
EL∗2n(θ)

EL∗2n(θ̂n)

}
.

This method is also a plug-in method as we substitute ĜKM (t) for G0(t). It

differs from the plug-in method described in Section 3.1, however, in the sense

that the problem has been switched from original data to synthetic data before

plug-in, and the parameter that got plugged is infinite dimensional (G0(t)).

Weighted empirical likelihood: This third method was proposed by Ren

(2001, 2008). Given fixed weights vi ≥ 0, a weighted empirical likelihood is

defined

EL3n(w1, . . . , wn) =

n∏
i=1

(wi)
vi ,

∑
i

wi = 1 .

It is not hard to show that EL3n is maximized when wi = vi/
∑

j vj . With the

particular choice of vi = ∆F̂KM (Ti) the maximizer of EL3n is w∗i = ∆F̂KM (Ti),

the jump of Kaplan-Meier. Thus, with this choice of weights, the confidence

regions obtained by inverting the likelihood ratio test below are also centered at

the same value θ̂n in (3.3).

The weighted empirical likelihood under the null hypothesis can be computed

by solving the constrained maximization problem; given vi = ∆F̂KM (Ti),

EL3n(θ) = max
wi

(
n∏
i=1

(wi)
vi

n∑
i=1

wiδig(Ti) = θ ,

n∑
i=1

wi = 1 , 0 ≤ wi

)
.

The likelihood ratio statistic is given as −2 logELR3n(θ) = −2 log{EL3n(θ)/

EL3n(θ̂n)}. Here observations i and j are supposed to be independent, from

which the product form of the empirical likelihood arises. The weights vi are

supposed to be fixed and non-random, but with vi = ∆F̂KM (Ti), this does not

hold.

Theorem 3. Assume conditions under which the Kaplan-Meier integral is con-

sistent and asymptotically normal. Then,
√
n(θ̂n − θ0)−→U , (3.4)



SIZE AND SHAPE OF EL CONFIDENCE REGIONS 379

in distribution, where U ∼ N(0,Σ). Furthermore,

−2 logELR1n(θ0) = n(θ̂n − θ0)>V −11n (θ̂n − θ0) + op(1) , (3.5)

−2 logELR∗2n(θ0) = n(θ̂n − θ0)>V −12n (θ̂n − θ0) + op(1) , (3.6)

−2 logELR3n(θ0) = n(θ̂n − θ0)>V −13n (θ̂n − θ0) + op(1) , (3.7)

where limn→∞ V1n = Σ, limn→∞ V2n 6= Σ and limn→∞ V3n 6= Σ.

It follows form Theorem 3 and Hjort, McKeague and Keilegom (2009) that

−2 logELR1n(θ0)→χ2
p in distribution, whereas the Wilk’s theorem does not hold

for −2 logELR∗2n(θ0) and −2 logELR3n(θ0). Theorems 1 and 3 together show

that the confidence region provided by inverting the test −2 logELR1n(θ0) by

the censored empirical likelihood method is asymptotically optimal and, in par-

ticular, better than those confidence regions obtained from ELR∗2n and ELR3n.

4. Empirical Studies

We illustrate the relative optimality of confidence regions using two simula-

tion studies. Confidence regions calibrated to yield same coverage probabilities

were obtained by inverting these likelihood ratio tests.

In each case the extended likelihood methods which yield the likelihood ratio

statistics that do not observe the Wilk’s theorem are computationally challenging

since the asymptotic distributions need to be estimated. For example, Theorem

2 implies that the extended likelihood method using ELR2n(θ) requires estimat-

ing the scale parameters c1, . . . , cp or the eigenvalues of V2W
−1. In applications

the bootstrap may be used to calibrate converage probabilities. In our simula-

tions we used 10,000 Monte Carlo samples to calibrate the associated confidence

regions to have 90% coverage probabilities. The confidence regions obtained by

inverting the likelihood ratio statistics that observe the Wilk’s theorem do not

need numerical calibration and were constructed based on the 90-th percentiles

of the corresponding chi-square limiting distributions. The comparisons provide

empirical confirmation of Theorem 1.

4.1. Simulation studies 1

We used a regression model with heteroscedastic errors, and applied the

profile likelihood and the plug-in method described in Section 3.1 for the inference

of two slope parameters:

yi = α+ β1x1i + β2x2i + eix2i ,

where x1i ∼ N(0, 1), x2i ∼ χ2
1 and ei ∼ N(0, 1). Here the parameters of inter-
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Figure 1. Empirically estimated null distributions of the profile and the plug-in likelihood
ratio statistic for the case of estimating equations with nuisance parameters.

est was θ = (β1, β2) with the true value θ0 = (1, 0.5) and the intercept was the

nuisance parameter (ψ = α). Consider Zi = (Z1i, Z2i) with Z1i = yi and Z2i =

(x1i, x2i). The estimating functions m(Zi, θ, ψ) and h(Zi, θ, ψ) are given, respec-

tively, as m(Zi, θ, ψ) = (Z1i−θ>Z2i)Z2i and h(Zi, θ, ψ) = (Z1i−θ>Z2i) . Figure 1

shows empirically estimated null distributions of the profile likelihood ratio statis-

tic −2 logELR1n(θ0) and the plug-in likelihood ratio statistic −2 logELR2n(θ0)

in (3.1) based on 5,000 Monte Carlo samples. The Q-Q plots show that the

null distribution of the plug-in likelihood ratio statistic remains apart from a

chi-squared distribution with degrees of freedom 2, even in a large sample case.

Figure 2 shows an example of confidence regions. The confidence regions

provided by the plug-in empirical likelihood method are larger relative to those

by the profile likelihood, and shaped differently.

4.2. Simulation studies 2

We used censored data Ti and δi from the censored data setting with lifetime
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Figure 2. Confidence regions drawn for a sample of the case of estimating equations with
nuisance parameters.

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.
55

0.
60

0.
65

0.
70

plug−in EL region, dotted line

weighted EL region, dash line

EL region, solid line

90% confidence regions

Figure 3. Confidence regions drawn for a sample data of n = 1, 000 subject to 37%
censoring.

Yi and censoring times Ci; Yi ∼ exp(1), Ci ∼ 0.1+exp(0.6). The two expectations

tested EYi = a1, and EI[Yi>0.5] = a2, where the parameter of interest was θ =

(a1, a2) with the true value θ0 = (1, e−0.5).
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Figure 3 shows three confidence regions drawn for a sample data with the

sample size n = 1, 000 subject to 37% censoring. As implied by Theorem

3, the orientation and shape of the confidence regions by the plug-in (using

−2 logELR∗2n(θ0)) and the weighted empirical likelihood methods (using

−2 logELR3n(θ0)) are different from the confidence region with the censored

empirical likelihood method (−2 logELR1n(θ0)). Also, the confidence region by

the censored empirical likelihood method is the one with the smallest area.

5. Conclusion

In this paper we consider several extensions of empirical likelihood method.

Limiting to the extensions that provide the same maximum empirical likelihood

estimators, we evaluate relative optimality of the methods by comparing the

confidence regions obtained by inverting the likelihood ratio tests. We show that

the extension method which yields the likelihood ratio statistic observing the

Wilks theorem provides the smallest confidence region.
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Appendix

Proof of Theorem 1 Consider

C∗1n = { θ n(θ̂− θ)>V −11 (θ̂− θ) ≤ c1} , C∗2n = { θ n(θ̂− θ)>V −12 (θ̂− θ) ≤ c2} ,

where n1/2(θ̂ − θ) → Np(u,W ) for θ = θ0 + n−1/2u with a p-variate constant

vector u. It follows from (2.1) that V ol(C∗1n) = V ol(C1n) + ε1n and V ol(C∗2n) =

V ol(C2n) + ε2n where ε1n, ε2n → 0. WLOG, we take the αn such that Φ−1(1 −
αn) = O(

√
n), so the limiting volumes do not vanish as n → ∞. By Lemma 2,

as n→∞, V ol(C∗1n)/V ol(C∗2n) ≈ V ol(C∗2n)/V ol(C∗1n) < 1 unless V2 = W .

Remark 2. If we let αn = α (fixed), both confidence regions would have volumes

shrink to zero as n grows, and hence the relative optimality is in the asymptotic

sense of the confidence level increasing with n.

Lemma 2. (i) Consider the confidence regions based on an estimator θ̂ that has

distribution N(θ0, I) : C1 = {θ : (θ̂−θ)>(θ̂−θ) < c}, C2 = {θ : (θ̂−θ)>B(θ̂−θ) <
c∗}, where B 6= I is a non-negative definite matrix. If both confidence region

have the coverage probability 1−α ∈ (0, 1), C1 is superior to C2 in the sense that
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V ol(C1) < V ol(C2).

(ii) If θ̂ is normally distributed with N(θ0,Σ), then the optimal confidence

region for the parameter θ0 is {θ : (θ̂ − θ)Σ−1(θ̂ − θ) < c}.

Remark 3. If B = σ2I, then the two confidence regions in Lemma 2 (i) are

identical. The constant σ2 cancels out when adjusts the cut-off level c∗. Lemma

@ should be understood to use any non-negative definite matrix other than σ2I.

Remark 4. If confidence regions are allowed not to center at θ̂ then there may

be better regions available (Stein phenomena) than those in Lemma 2. We only

consider a limited class of confidence regions that are centered at the same θ̂

since they are derived from extended empirical likelihood ratio tests.

Proof of Lemma 2

As (ii) is an easy consequence of (i), proving (i) suffices. The coverage

probability of C1 is
∫
‖θ0−x‖2<c f(x)dx, where f(x) denotes the density of θ̂. Define

a distance by dB(θ0, θ̂) = (θ0 − θ̂)>B(θ0 − θ̂). The coverage probability of C2

is
∫
dB(θ0−x)<c∗ f(x)dx. By substituting y = θ̂ − θ0 with y ∼ N(0, I), the two

integrals become ∫
‖y‖2<c

f(y)dy and

∫
dB(y)<c∗

f(y)dy .

Let the regions of the two integrations be R1 =‖ y ‖2< c and R2 = dB(y) <

c∗. Since the normal density f(y) is a strict monotone decreasing function of

‖ y ‖, the requirement of equal coverage probability∫
R1

f(y)dy =

∫
R2

f(y)dy (A.1)

forces V ol(R2) > V ol(R1). Thus, R1 is the region with highest f(y) values that

integrates to a given α value, and any other region that integrates to the same

α value includes regions with some lower f(y) values, thus a larger V ol(R2). It

is clear that the inequality is strict unless R2 coincide with R1.

Proof of Theorem 2

Let Qn =
(
n−1

∑n
i=1m(Zi, θ0, ψ0), n

−1∑n
i=1 h(Zi, θ0, ψ0)

)
. From the proofs

of Theorem 1 and Corollary 5 of Qin and Lawless (1994) we have

n1/2(θ̂n − θ0) =
(

Σ(11) Σ(12)

)
S21S

−1
11 (n1/2Qn) + op(1) , (A.2)

n1/2(ψ̂n − ψ0) =
(

Σ(21) Σ(22)

)
S21S

−1
11 (n1/2Qn) + op(1) .

where S21(2) = S>12(2) = E
{

(∂m/∂ψ)>, (∂h/∂ψ)>
}
. After some matrix manipu-
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lation we have

−2 logELR1n(θ0) = (n1/2Qn)>S−111 S12

(
Σ(11)

Σ(21)

)
(Σ(11))

−1[Σ(11),Σ(12)]

S21S
−1
11 (n1/2Qn).

On the other hand, by the standard arguments of the empirical likelihood method,

−2 logELR2n(θ0) = λ̃>
{

E (mm>)
}
λ̃− λ̂>

{
E (mm>)

}
λ̂+ op(1) , (A.3)

where λ̂ and λ̃ are defined by solutions to the equations

0 = n−1
n∑
i=1

m(Zi, θ̂n, ψ̂n)

1 + λ̂>m(Zi, θ̂n, ψ̂n)
, 0 = n−1

n∑
i=1

m(Zi, θ0, ψ̂n)

1 + λ̃>m(Zi, θ0, ψ̂n)
.

From (A.2) and (A.3) we have

−2 logELR2n(θ0) = n(θ̂n − θ0)>
(

E
∂m

∂θ

)> {
E (mm>)

}−1(
E
∂m

∂θ

)
(θ̂n − θ0)

+ op(1) .

Definitions of S12, S21, S11 and Σ(11) complete the proof.

Proof of Theorem 3

When p = 1 the result (3.4) is given by Akritas (2000). Zhou (2011) shows

that, for p > 1, (3.4) also holds with the jkth element of Σ as

σjk =

∫
{gj(x)− ḡj(x)}{gk(x)− ḡk(x)} dF0(x)

1−G0(x−)
, (A.4)

where ḡj(t) denoting the ‘advanced time transformation’ of gj in Efron and John-

stone (1990).

Zhou (2011) also showed that (3.5) holds with the jkth element of V1n given

by

σ̂jk =

n∑
i=1

{gj(Ti)− ḡj(Ti)}{gk(Ti)− ḡk(Ti)}
∆F̂KM (Ti)

1− ĜKM (Ti)
.

Since V1n is just Σ with the unknown F0 and G0 replaced by their Kaplan-

Meier estimators and the fact that the Kaplan-Meier estimators are uniformly

consistent, V1n → Σ in probability as n → ∞. We refer to Zhou (2011) for

details.

It follows from Owen (2001, pp.220–221) (with X∗i in place of Xi there) that

−2 logELR∗2n(θ0) = U>2nV
−1
2n U2n + op(1)

where
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U2n =
√
n(X̄∗ − θ0) =

√
n(θ̂n − θ0) , V2n = n−1

n∑
i=1

(X∗i − θ0)(X∗i − θ0)> .

Since ĜKM (t) is uniformly consistent for G0(t),

V2n = n−1
n∑
i=1

(Xi − θ0)(Xi − θ0)> + op(1) = V ar(X1) + op(1) .

By the results in Zhou (1992) and Srinivasan and Zhou (1994), var(X1) 6= Σ

however. This suffices to show (3.6).

As for (3.7), when p = 1, Ren (2001) showed that the limiting distribution

of this test statistic with θ = θ0 is a scaled chi-square distribution with degree of

freedom 1. To obtain a multivariate version, we modify the proof of Ren along

the lines of Owen (2001, pp.220–221) to incorporates weights, and find

−2 logELR3n(θ) = U>n V
−1
3n Un + op(1)

where

Un =
√
n

{
n∑
i=1

g(Ti)∆F̂KM (Ti)− θ0

}
=
√
n(θ̂n − θ0) ,

and V3n is a matrix with the jkth element given by

vjk =

n∑
i=1

{gj(Ti)− θ0}{gk(Ti)− θ0}∆F̂KM (Ti) .

An application of the law of large numbers for the Kaplan-Meier integral gives

vjk =

∫
{gj(t)− θ0}{gk(t)− θ0}dF̂KM (t)→

∫
{gj(t)− θ0}{gk(t)− θ0}dF0(t)

in probability as n → ∞. Since Σ depends on the censoring distribution G0,

while limV3n does not, limn→∞ V3n 6= Σ.
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