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Abstract: We show that a new alternative estimator of pAUC, described by Yang,

Lu and Zhao (2017), is in fact the same good old Mann-Whitney estimator, with

linear interpolation. Several existing R software for computing the estimator are

compared.
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1. Introduction and Conclusion

In the paper of Yang, Lu and Zhao (2017) they studied two different es-

timators of Partial Area Under ROC Curve (pAUC) given a sample of m

Xi’s and another sample of n Yj’s : namely the classic Mann-Whitney esti-

mator and a new alternative estimator which they attributed to Wang and

Chang (2011). They subsequently used this alternative estimator to obtain



the jackknife pseudo-values, which in turn leading to the estimation of the

variance, and construction of an empirical likelihood.

On the surface the two estimators look quite different. However, we

found that these two estimators of pAUC are actually identical in the sense

that the alternative estimator is a linearly interpolated Mann-Whitney es-

timator:

Main Result (1) If the partial value P equals to one of those values

in the set A below then the two estimators, (defined in (2.2) and (2.3)),

are exactly equal. (2) Suppose P takes a value in between two consecutive

values of this set A, i.e. a(j) < P < a(j+1) where a(k) being the ordered val-

ues of the set A. Then the Mann-Whitney estimator (as defined in (2.2))

equals to its value at a(j); and the alternative estimator (defined in (2.3))

equals to a linear interpolation between the Mann-Whitney values at a(j)

and a(j+1).

The set A is defined by

A = {P ; for some x ∈ R1, P =
1

n

n∑
j=1

I[Yj > x] }, (1.1)

which is just {0, 1/n, 2/n, · · · , 1} if there is no tie in the Yj sample of n

observations. If there are ties in the Yj observations, then some of the

values in the list will be missing.

Smoothing, when sample quantile functions are involved, is a common



practice. For example, the R function quantile() has 9 different options for

different smoothing choices. We point out that the classic Mann-Whitney

estimator of pAUC, see (2.2), involves sample quantile and is a step function

in P0. Therefore smoothing is often used. Aside from the linear interpola-

tion smoothing, Zhao, Ding and Zhou (2022) used higher order smoothing

for the Mann-Whitney estimator of pAUC.

The R software package pROC Robin et al. (2023) actually also used a

linear smoothing for the Mann-Whitney estimator of pAUC, therefore the

Mann-Whitney estimator obtained by using function provided by package

pROC will get you exactly the same result as the so called alternative esti-

mator for all P0. See numeric examples later.

2. Definition, a Lemma and Proof of the Main Result

We shall keep using all the notation of Yang, Lu and Zhao (2017). We recall

the definition

SG,n(t) =
1

n

n∑
j=1

I[Yj > t] ,

and

S−1
G,n(P0) = inf{x ∈ R1; P0 ≥ SG,n(x)} .



Using their notation, the definition of the two estimators are

p̂AUC(0, P0) =
1

mn

m∑
i=1

n∑
j=1

I[Xi ≥ Yj]I[Yj > S−1
G,n(P0)] Mann-Whitney

(2.2)

and

p̃AUC(0, P0) = P0 −
1

m

m∑
i=1

min{SG,n(Xi), P0} Alternative. (2.3)

Below we show the two estimators are identical for P0 = any values

in the set A of (1.1). Let us begin the proof by re-write the alternative

estimator:

p̃AUC(0, P0) =
1

m

m∑
i=1

P0 −
1

m

m∑
i=1

min{SG,n(Xi), P0}

=
1

m

m∑
i=1

[P0 −min{SG,n(Xi), P0}] =
1

m

∑
i:SG,n(Xi)≤P0

P0 − SG,n(Xi)

=
1

m

∑
i:SG,n(Xi)≤P0

{
P0 − 1/n

n∑
j=1

I[Xi < Yj]

}
.

Next, we want to substitute in the above

P0 =
1

n

n∑
j=1

I[Yj > S−1
G,n(P0)] = SG,n(S−1

G,n(P0)) , (2.4)

for those P0 values specified in the set A of (1.1) in view of the following

Lemma:



Lemma This identity (2.4) is not valid for all P0 values (left hand side

is continuous in P0, right hand side is a step function of P0) but it is valid

when P0 takes any value in the set A specified in (1.1).

We shall give a formal proof at the end, but include here a plot that

illustrate the validity of our Lemma.
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Figure 1: Red equals black at P = 0, 0.2, 0.4, 0.6, 0.8, 1.

Therefore, for those P0 values in the set A, we finally have

p̃AUC(0, P0) =
1

m

∑
i:SG,n(Xi)≤P0

{
1

n

n∑
j=1

I[Yj > S−1
G,n(P0)]−

1

n

n∑
j=1

I[Xi < Yj]

}

=
1

mn

∑
i:SG,n(Xi)≤P0

n∑
j=1

I[Yj > S−1
G,n(P0)]− I[Xi < Yj] .



Next we point out I[SG,n(Xi) ≤ P0] = I[Xi ≥ S−1
G,n(P0)] for i = 1, · · · ,m

by the definition of the inverse. Thus we can continue

p̃AUC(0, P0) =
1

mn

m∑
i=1

n∑
j=1

I[Xi ≥ S−1
G,n(P0)]{I[Yj > S−1

G,n(P0)]−I[Xi < Yj]} .

To finish the proof, we use Vann diagrams to confirm the set relation

[Xi ≥ S−1
G,n(P0)][Yj > S−1

G,n(P0)]−[Xi < Yj][Xi ≥ S−1
G,n(P0)] = [Xi ≥ Yj][Yj > S−1

G,n(P0)] .

What about the other values of P0 not specified in the set A? Well,

apparently the so called alternate estimator is continuous in P0 and linear

for a(j) < P0 < a(j+1); while the Mann-Whitney is a step function with

jumps at a(j).

Yang, Lu and Zhao (2017) also studied two similar estimators for pODC.

Parallel results also hold there, in that the two estimators are actually the

same.

3. Numeric Examples

We confirm the equality of the two estimators, by using numerical exam-

ples. Since the existing Mann-Whitney estimators in R packages often apply

some sort of smoothing, we shall write our own code to strictly follow the

definition in section 2 (2.2) of this paper without smoothing. We also write

our own code for the “alternative” estimator.



R code for the Mann-Whitney pAUC estimator, no smoothing.

MannW <- function(xvec, yvec, partial) {

if(partial > 1) stop("partial can not > 1")

if(partial < 0) stop("partial can not < 0")

m <- length(xvec)

n <- length(yvec)

if(partial == 0 ) Qpartial <- max(yvec)

if(partial == 1 ) Qpartial <- -Inf

if((partial <1)&(partial >0)) Qpartial <- QS(yvec, partial)

iSUMYj <- rep(0, m)

for (i in 1:m)

iSUMYj[i] <- sum(as.numeric((xvec[i]>=yvec)&(yvec>Qpartial)))

FV <- sum( iSUMYj/n )/m

return(FV)

}

QS <- function(yvec, partial) {

#### Assume 1> partial >0. Omit checking.

n <- length(yvec)

prob <- (0:n)/n

sortedY <- sort(yvec)

Qpartial <- -Inf

posi <- sum(as.numeric(partial > prob))

if( partial == prob[posi+1] ) Qpartial <- sortedY[n-posi]

if((prob[posi] <= partial)&(partial < prob[posi+1]))

Qpartial <- sortedY[n+1-posi]

return(Qpartial)

}

R code for the alternative pAUC estimator.

ALTernative <- function(xvec, yvec, partial) {

if(partial > 1) stop("partial can not > 1")

if(partial < 0) stop("partial can not < 0")

m <- length(xvec)



n <- length(yvec)

Yecdf <- ecdf(yvec)

SYecdf <- function(t){1 - Yecdf(t)}

temp <- pmin( SYecdf(xvec), partial )

FV <- partial - sum(temp)/m

return(FV)

}

Now we are ready to compute some examples and compare:

set.seed(123)

Yvec <- rnorm(50); Xvec <- rnorm(50, mean=1)

ALTernative(xvec=Xvec, yvec=Yvec, partial=0.3)

## You get 0.1492

MannW(xvec=Xvec, yvec=Yvec, partial=0.3)

## You also get 0.1492,

## since 0.3=15/50, it is a value in the set A of (1.1)

MannW(xvec=Xvec, yvec=Yvec, partial=0.32)

## You get 0.1648.

ALTernative(xvec=Xvec, yvec=Yvec, partial=0.32)

## You also get 0.1648

#### Since partial=0.32=16/50, both estimators return 0.1648.

If P0 is in between the node points, the two estimators are different.

ALTernative(xvec=Xvec, yvec=Yvec, partial=0.31)

## You get 0.157

MannW(xvec=Xvec, yvec=Yvec, partial=0.31)

## You get 0.1492; different from above.

## Since 15/50 < 0.31 < 16/50.

Verify that the difference in two estimators is due to a linear interpola-
tion:

(0.1492+0.1648)/2

## You get 0.157, same as ALTernative ( ..., partial=0.31)



Remark: If we use the R package pROC, then the Mann-Whitney es-

timator there are apparently already linearly smoothed, which lead to the

identical estimator as the ‘alternative’ estimator for all values of P0.

Remark: As a side note, the option of method="MW" for Mann-Whitney

estimator inside the function proc in the R package tpAUC Version 2.1.1

gives a different result as above. There must be a bug. I was unable (email

bounce) to contact the maintainer of the package to alert him.

library(pROC)

roc(c(rep("Good",50),rep("Poor",50)), c(Yvec,Xvec),

partial.auc=c(1-0.3, 1), partial.auc.focus="sp",

progress="none", ci=FALSE)

## You get the Mann-Whitney est., exactly same as above: 0.1492

roc(c(rep("Good",50),rep("Poor",50)), c(Yvec,Xvec),

partial.auc=c(1-0.31, 1), partial.auc.focus="sp",

progress="none", ci=FALSE)

## You get est.=0.157, same as ALTernative(..., partial=0.31).

library(tpAUC)

proc(c(rep("Good",50),rep("Poor",50)), c(Yvec,Xvec),

threshold=0.3, method="expect")

##You get an alternative est. pAUC(0, 0.3)=0.1492, same as others.

proc(c(rep("Good",50),rep("Poor",50)), c(Yvec,Xvec),

threshold=0.3, method="MW")

##You get Mann-Whitney est. 0.1648 (something wrong, must be a bug)

As a final note, our proof do not invalidate the work of Yang, Lu and

Zhao (2017), rather we show that their jackknife method and empirical

likelihood approach are really for the (smoothed) classic Mann-Whitney

estimator.
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4. Proof of Lemma

It is easy to verify the Lemma when P0 = 0 (in this case S−1
G,n(0) = maxYj , and SG,n(maxYj) =

0). Also for P0 = 1 (in this case S−1
G,n(1) = −∞ and SG,n(−∞) = 1).

Now suppose p′ is one of those values as specified in A as in (1.1) and 0 < p′ < 1. This

means

p′ =
1

n

n∑
j=1

I[Yj > x′] for some x′.

In fact there are many x that also satisfy the above equality. We write out all those x: for any

x ∈ [A, I), it will satisfy the above equality as well as the x′. (this is just the flat interval of

SG,n(·) contain x′)

A = max(Yj ; s.t. Yj ≤ x′) and I = min(Yj ; s.t. Yj > x′) .

By definition of S−1
G,n(P0), when P0 = p′, is

inf{x ∈ R1; P0 = p′ ≥ 1

n

∑
I[Yj > x]} .

This x set, as we argued, obviously include the interval [A, I). Due to monotonicity of SG,n(·),
this x set also includes anything above it but nothing below it. Thus the infimum is seen to

equal to A which means S−1
G,n(p′) = A. Finally SG,n(A) = p′ since #{Yj > A} = #{Yj > x′}.

So we have verified P0 = SG,n(S−1
G,n(P0)) for all P0 values in the set A.
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