The Welch-Satterthwaite Adjustment for Censored Data
Two Sample Restricted Mean Tests

Mai Zhou*

Abstract

The Welch-Satterthwaite approximate two sample t-test is generally preferred over
the pooled variance version, because equal variances assumption is seldom true. We
propose to use the Welch-Satterthwaite adjustment for two-sample censored data Re-
stricted Mean Survival Time tests. We apply the Welch-Satterthwaite adjustment to
both the Wald tests and Wilks tests. Simulations are provided which show the adjust-
ment significantly improve the small sample accuracy of the tests.

MSC 2010 Subject Classification: Primary 62N02; secondary 62G05, 62B10.

Key Words and Phrases: Restricted mean survival times, Small samples, Accuracy of
type I error.

1 Introduction

The log-rank test is often used for compare two samples of right censored. However, its
performance may seriously degrade when two hazards are not proportional to each other.
When the proportional hazards assumption is in doubt, many researchers recently propose to
use the restricted mean survival time (RMST') as a measure to evaluate/compare treatments
with right censored data. See for example [1], [2], [3], [4], [5] to name a few.

Some simulation show that the tests based on the RMST can be very competitive to
the log-rank tests when the proportional hazards assumption does hold, but much better
than the log-rank test when the proportional hazards assumption is violated, [16]. Also the
restricted mean value is an intuitive and easy to interpret characteristic/measure.

However, simulations also show that the Wald type RMST tests have poor accuracy
(inflated type I error) for small sample sizes [15]. Similar problem also exist (though less
profound) if we use the Wilks type tests based on empirical likelihood [17], [18].
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In order to improve small sample accuracy, we propose to replace the standard normal
distribution in the Wald tests by a t-distribution with the Welch-Satterthwaite degrees of
freedom [7], [8]. Similarly, for the Wilks tests based on empirical likelihood, we replace the
standard chi square distribution by a t-distribution square, with the Welch-Satterthwaite
DF.

Owen (2001), in the context of one-sample tests, suggest to fine tuning the smaller sample
accuracy of the empirical likelihood test, by use a t-distribution square (or F-distribution)
to replace the typical chi-square limiting null distribution for the empirical likelihood ratio
test. This is a level two adjustment as opposed to the W-S, which is a level three adjustment
(see section 2).

Simulations are conducted which show the W-S adjustment improves the accuracy of
error rate for both the Wald and Wilks two sample tests, especially for smaller sample sizes.

2 Two Sample Welch-Satterthwaite Adjustment

We can identify three levels of accuracy when trying to come up with an approximate null
distribution for a test statistic.

Level one is to use a single (limiting) distribution, no matter what sample sizes are and
no matter how the sample data at hand look like. An example is the approximate 95%
(Wald) confidence interval (in no censor data case)
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Here the coefficient 1.96 stems from a single standard normal distribution.

Level two would incorporate the sample size into the construction of the distribution
(t-distribution or F-distribution with DF related to current sample size). An example is the
approximate 95% confidence interval
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Here t,,1., 2(0.975) incorporate the information of sample sizes n and m. In other words,
the distribution in question is not a single one but a series of t-distributions with different
DFs depend on the sample sizes.

A further improvement, level three, would also use the sample data in addition to the
sample size in constructing the distribution. An example is the approximate 95% confidence
interval
s%
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where the degree of freedom v is the so called Welch-Satterthwaite DF:

L (sg/n#—sz/m)z )
(s2/n)?/(n — 1) + (s2/m)?/(m — 1)

Notice the calculation of v uses not only the sample sizes n and m but also the sample data
in the form of 57 and s?. Thus v is random (as opposed to the distributions in Level one and
two). Another example of Level three approximation is bootstrap, which also uses sample
observation to construct a (random) distribution, conditional on the given sample. We shall
not delve into this topic here.

We point out that the (empirical) likelihood ratio based tests/confidence intervals (Wilks
confidence intervals), are also examples of Level 3 approximation by above categorization.
Since the shape of the Wilks confidence interval/region is random (depend on the given
sample data) even for fixed sample size.

The above examples are for non-censored data. But the same idea apply for censored
data: where we try to test/estimate the difference of two restricted mean survival times.
The null distribution of the test statistic can be better approximated by techniques of level
3, if done right.

Another related phenomena is the expected verses observed Fisher information: observed
information is a level 3 approximation while the expected information is level one. Efron and
Hinkeley (1978) have argued that using the observed information actually leads to better
approximations.

3 Analysis of two-sample RMST's

In the analysis of RMST, the exact distribution of the integrated Kaplan-Meier is unknown,
and we use the fact that the distributions are asymptotically normal. Further, the assumption
of equal variances for two samples are not reasonable. Therefore a Welch-Satterthwaite
calibrations is appropriate.

3.1 Two-sample Wald Confidence Interval for RMST

The exact formula for the Wald test is detailed in [15], including the variance estimator
of the integrated Kaplan-Meier estimator. The general reference paper here is Uno et. al.
(2014) and calculation is available in R package survRM2.

Our proposed adjustment simply replace the standard normal distribution with the t-
distribution, degrees of freedom v as in (1).



3.2 Two-sample Wilks Confidence Interval for RMST

The reference paper here is Zhou (2020) [17]. For the empirical likelihood tests in general,
references are Owen 2001 [6] and Zhou 2016 [18]

Here the construction of confidence interval (or test) do not need the estimated variance.
We use the same W-S degree of freedom calculated from previous subsection (Wald test)
here to identify the t-distribution for our significance calculation. In other words, the —2 log
Empirical Likelihood Ratio is deemed significant at 5% level, if and only if it is larger than
[qt(0.975, df = v)]?, etc. Here ¢t(0.975,n) denote the 0.975 quantile of a t-distribution with
degrees of freedom n.

4 Simulations

We focus on the testing of two sample Restricted Mean Survival Time difference with right
censored data.

In Table 1, data were generated under null hypothesis of equal RMSTs. Actual type I
error at nominal 5% and 1% errors are shown. With different sample sizes. Based on 5000
simulation runs.

Sample 1: Weibull shape=0.9, scale =12.7
Sample 2: Weibull shape =0.9, scale =12.7
Censoring distribution for both sample are Uniform (0, 12.5).

sample size restriction No calib. W-S calib. No calib. W-S calib.
30, 20 T =10 6.87% 6.13% 2.06% 1.62%
35, 25 T=10 6.51% 5.96% 1.77% 1.47%

Table 1. Welch-Satterthwaite calibration for Wald test from survRM2.
Nominal 5% and 1%. Under H,.

Next, same simulation but under the alternative hypothesis:
Sample 1: Weibull shape=1.9, scale =12.7

Sample 2: Weibull shape =0.9, scale =12.7

Same censoring distributions as above.

Table 2 contains the actual observed error, i.e. percentage of confidence intervals NOT
covering the true RMST difference (here true RMST differences are not zero): for nominal
95% confidence intervals and 99% intervals.



sample size restriction No calib. W-S calib. No calib. W-S calib.

25, 20 7 =10 7.47% 6.56% 2.19% 1.58%
30, 25 7=10 6.86% 6.23% 1.711% 1.36%
30, 20 T=10 7.29% 6.5% 2.31% 1.76%
35, 25 T=10 6.83% 6.19% 1.95% 1.56%

Table 2. Welch-Satterthwaite correction for Wald test from survRM2. Under Hy.

Next, we apply the W-S correction to the empirical likelihood test/confidence interval
(Wilks interval) with the same data as above.

Table 3 is the results under Hy. Different sample sizes. Chi-square entry is for no
adjustment (Level 1), t?(nl +n2 — 2) entry is a level 2 adjustment and W-S entry is a level
3 adjustment discussed above.

Nominal sample size restriction Chi-square t*(nl +n2—2) W-S calib.
5% 35, 25 T=10 6.54% 6.04% 5.94%
1% 35, 25 T=10 1.64% 1.34% 1.28%
Table 3. Simulated type I error of EL test using Chi-square, t*(nl + n2 — 2) and
Welch-Satterthwaite calibration

Table 4 is the results for Empirical likelihood ratio RMSTs tests, but under the same H 4
as in table 2. (based on 5000 runs)

Nominal sample size restriction Chi-square t*(nl +n2 —2) W-S calib.
5% 35, 25 7 =10 6.7% 6.12% 5.9%
1% 35, 25 7 =10 1.76% 1.4% 1.32%
Table 4. Simulated error of EL test using Chi-square, t*(nl + n2 — 2) and

Welch-Satterthwaite

We can see that

(1) the W-S calibration always improves the accuracy of the approximation of actual
error to nominal error, for either the Wald test or the Wilks test.

(2) The W-S calibration improvements are more profound under alternative hypothesis
and for unequal sample sizes.

(3) Even with the W-S calibration, the actual error of Wilks tests are still larger than
the nominal values (more so for Wald tests).

(4) With W-S calibration the Wilks tests are often more accurate than the Wald tests.
(e.g. Under Hy 5.9% vs. 6.19% after W-S calibration. Under Hy 5.94% vs. 5.96% after W-S
calibration).
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Discussion

The Welch-Satterthwaite calibration is simple enough that it almost cost nothing to compute.
The improvement for error is robust and across board so we recommend it for all two sample

RMST tests.

In counting the sample size for either sample 1 or sample 2, i.e. N1 or N2, there are some

rare cases that a right censored observation occurs before any real failure. We recommend
delete this censored observation instead of counting it in the sample size. The reason is that
such observation does not carry any information in the nonparametric inference such as the
Kaplan-Meier.

Bartlett correction [6] is another possibility for improving small sample accuracy of Wilks

tests but it seems too complicated to work reliably in censored data setting, if at all.
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6 R functions that compute the Welch-Satterthwaite
effective degrees of freedom.

First, we need the function rmst2_update.WS which is a modification of an existing one in
the R package survRM2, by adding the calculation and output of a W-S effective DF adjusted
P-value.

Second, we need the function rmst1_update (from the R package survRM2), which is used
by rmst2_update.WS. The R package survival is also needed.

rmst2_update.WS <- function(time, status, arm, tau=NULL, alpha=0.05,
var .method="greenwood", test, Mean0=0){

Z=1ist )

#__
wkl=rmstl_update(time[arm==1], status[arm==1], tau, alpha, var.method)
wkO=rmst1_update(time[arm==0], status[arm==0], tau, alpha, var.method)

#--- contrast (RMST difference) ---

rmst.diff.10 wk1$rmst [1]-wkO$rmst [1] - MeanO  #### Added by Mai Zhou 8/2020
rmst.diff.10.se sqrt (wk1$rmst.var + wkO$rmst.var)

rmst.diff.z rmst.diff.10/rmst.diff.10.se

#it####——- Added by Mai Zhou, 8/2020 ---

NO <- length(time[arm==0])

N1 <- length(time[arm==1])

s0dNO <- wkO$rmst.var

s1dN1 <- wki$rmst.var

effDF <- (s0dNO + s1dN1)~2/((s0dNO)"~2/(NO-1) + (s1dN1)"2/(N1-1))
WS.Pval.2side <- 2*pt(-abs(rmst.diff.z), df=effDF)

Calib.out = c(effDF, NO-1, N1-1, WS.Pval.2side)

names (Calib.out) = c("effDF", "DFO", "DF1", "Welch-Satterthwaite.pval.2side")
#H#####t-----------————————————

if (test=="1_side"){

rmst.diff.z.1side rmst.diff.z

rmst.diff.pval.lside = l-pnorm(rmst.diff.z.lside) # one-sided test (upper)

rmst.diff.result.1side cbind (rmst.diff.10, rmst.diff.10.se, 1,
rmst.diff.z.1side, rmst.diff.pval.lside, wki1$rmst[1], wkO$rmst[1])

#__
out = rmst.diff.result.1side
Yelse{



#test=="2_side"

rmst.diff.z.2side abs(rmst.diff.z)

rmst.diff.pval.2side = pnorm(-rmst.diff.z.2side)*2 # two-sided test

rmst.diff.result.2side cbind (rmst.diff.10, rmst.diff.10.se, 2,
rmst.diff.z.2side, rmst.diff.pval.2side, wki$rmst[1], wkO$rmst[1])

#__

out = rmst.diff.result.2side

}

#-—- results ——-

rownames (out)=c ("RMST (arm=1)-(arm=0)")

colnames(out) = c("Est.", "S.E.", "test-side", "z", "p", "rmstl", "rmstO")
#--- output ---

Z$unadjusted.result = out
Z$T.dist.calib = Calib.out
class(Z)="rmst2_update"

YA
}

We added an extra input MeanO in the function rmst2_update.WS so that the function
can be used to test an alternative hypothesis. Default value Mean0=0 which is the null
hypothesis.

rmstl_update <- function(time, status, tau, alpha=0.05, var.method="greenwood"){

ft
idx

survfit (Surv(time, status)~1) #
ft$time<=tau

wk.time sort (c(ft$time[idx] ,tau))
wk.surv = ft$surv[idx]

wk.n.risk = ft$n.risk[idx]
wk.n.event = ft$n.event [idx]

time.diff = diff(c(0, wk.time))
areas = time.diff * c(1, wk.surv)
rmst = sum(areas)

rmst

#--- asymptotic variance ---
if (var .method=="greenwood") {
#--Greenwood plug-in estimator



wk.var <- ifelse((wk.n.risk-wk.n.event)==0, O,
wk.n.event /(wk.n.risk *(wk.n.risk - wk.n.event)))
b
if (var .method=="aj"){
#--Aalen-Johansen plug-in estimators
wk.var <- ifelse( wk.n.risk==0, 0, wk.n.event /(wk.n.risk *wk.n.risk))

}

wk.var = c(wk.var,0)
rmst.var = sum( cumsum(rev(areas[-1])) "2 * rev(wk.var) [-1])
rmst.se sqrt (rmst.var)

#--- output ---

out=matrix(0,2,4)

out[1,]=c(rmst, rmst.se, rmst-qnorm(l-alpha/2)*rmst.se, rmst+qnorm(l-alpha/2)*rmst.se)

out[2,]=c(tau-out[1,1], rmst.se, tau-out[1,4], tau-out[1,3])

rownames (out)=c ("RMST", "RMTL")

colnames(out)=c("Est.", "se", paste("lower .",round((l-alpha)*100, digits=0), sep=""),
paste("upper .",round((1-alpha)*100, digits=0), sep=""))

Z=1ist ()

Z$result=out

Z$rmst = out[1,]

Z$rmtl = out[2,]
Z$tau=tau

Z$rmst.var = rmst.var
Z$fit=ft
class(Z)="rmstl_update"

return(Z)

}

We took the calculated effDF in the output of rmst2 update.WS and use it to pick a
t-distribution quantile. Square of this quantile is then used to calculate the p-value for the
log empirical likelihood.
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