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The Cox regression model is a cornerstone of modern survival analysis and is
widely used in many other fields as well. But the Cox models with time-change
covariates are not easy to understand or visualize.

We therefore offer a simple and easy-to-understand interpretation of the (ar-
bitrary) baseline hazard and time-change covariate. This interpretation also
provides a way to simulate variables that follow a Cox model with arbitrary
baseline hazard and time-change covariate. Splus/R codes to generate/fit vari-
ous Cox models are included. Frailty model is also included.
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The Cox regression model is invariably difficult for students to grasp, partly because

it is so different from the classical linear regression models. The added concept of time-

change covariates further increases the difficulty.

After several years of teaching a master’s level survival analysis course, we have

settled on a teaching approach that uses exponential distributions in conjunction with

a transformation to the Cox model. This approach is not found in the current text

books and has proven to be the most beneficial in enabling the students to grasp the

ideas quickly. For students that are increasingly computer-savvy, the codes we included

in this paper helps them understood what are the various Cox models; including Cox

model with time-change covariate, stratified Cox model and frailty model.

1. Cox regression model with a fixed covariate

We approach this topic by asking “How can one simulate variables that follow a Cox

model?” We start with an easy-to-understand special case: the parametric exponential

regression model.

In the exponential regression model, every outcome is exponentially distributed ex-

cept the rates are different, i.e. for i = 1, 2, · · · , n the survival time of the ith subject, Yi,

follows an exponential distribution with a (subject-specific) parameter λi = exp(βzi):
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P (Yi ≤ t) = 1− exp(−λit) with λi = exp(βzi), (1.1)

where zi is the covariate and β is the parameter.

The linear form βzi is borrowed from the ordinary linear regression model and the

exp(·) function is introduced to assure the parameter values stay positive (since the

exponential distribution must have a positive parameter λi). This exponential regression

model is relatively easy to understand and serves as our starting point. The Splus code

to generate those random variables is appended at the end of this paper.

Next we introduce an arbitrary monotone increasing transformation g(·) with

g(0) = 0, and g(t) ↗ for t > 0. (1.2)

From the above we notice that g−1(t) is also well defined and ↗.

Now we claim: The Cox model with an arbitrary baseline hazard function can be

obtained by replacing the Y ′
i s above with g(Yi)

′s.

A few remarks are in order.

First, since g(·) is monotone increasing, the ranks of the Y ′
i s are the same as those

of the g(Yi)
′s. Therefore any statistical procedure that uses only the ranks of the Y ′

i s

can still operate on the g(Yi)
′s as if no transformation had taken place. The Cox partial

likelihood function is such a function that depends only on the ranks of the Y ′
i s.

Second, if Y is an exponential random variable then g(Y ) no longer has the memory-

less property (unless g(t) = c·t). It could have either positive or negative memory. If g is

a power function, then g(Y ) has a Weibull distribution. We argue that the distributions

obtained by g(Y ) are more flexible and more suitable for modeling a wider variety of

survival times.

Before we prove the claim, we shall recast the exponential regression model (1.1) in

terms of hazards and define a Cox model.

For any distribution function F (t) with density f(t), the corresponding hazard func-

tion h(t) and cumulative hazard function H(t) are defined as

h(t) =
f(t)

1− F (t)
, H(t) =

∫ t

−∞
h(s)ds.

One useful formula is

1− F (t) = exp(−H(t)). (1.3)
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It is readily verified that Yi ∼ exp(λi) if and only if the hazard function of Yi is equal to

λi. Therefore an equivalent way to formulate model (1.1) is

hYi
(t) = the hazard function of Yi = λi = exp(βzi) ,

or

HYi
(t) = the cumulative hazard function of Yi = t× λi = t× exp(βzi) .

The Cox regression model can now be defined as

hYi
(t) = the hazard function of Yi = h0(t)× λi = h0(t)× exp(βzi) ,

or

HYi
(t) = the cumulative hazard function of Yi = H0(t)× λi = H0(t)× exp(βzi) ,

where h0(t) (H0(t)) is an arbitrary, unspecified baseline (cumulative) hazard function.

Theorem 1 If the random variables Yi follow exponential distributions with pa-

rameters λi = exp(βzi), i = 1, 2, · · · , n as in (1.1), then with g(·) as defined in (1.2),

the g(Yi)’s follow a Cox proportional hazards model with baseline cumulative hazard

function g−1(t).

Proof: Since P (Yi > t) = exp(−λi × t), the survival function of g(Yi) is

P (g(Yi) > t) = P (Yi > g−1(t)) = exp(−λi × g−1(t)).

Therefore the cumulative hazard function of g(Yi) is, according to (1.3),

λi × g−1(t) = exp(βzi)× g−1(t).

This is a Cox model with H0(t) = g−1(t). ♦
The crazy clock interpretation: The above discussion also offers another way

of interpreting the Cox model using a variable time clock: different subjects originally

are following different exponential distributions (that is, with different λ′is). However,

the common time clock (the transformation g−1(t)) is not a “linear clock” (one with

constant speed) but only a monotone clock with changing speed. The clock sometimes

goes faster and sometimes slower, resulting in the Cox model.
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As an example we consider the case of a Weibull regression model. The Weibull

regression model is Y ∗
i ∼ Weibull with shape parameter α and scale parameter λi =

exp(βzi), i.e.

hY ∗
i
(t) = αtα−1 exp(βzi) .

This is a special case of the Cox model with h0(t) = αtα−1. We can obtain Y ∗
i by first

generating exponential variables Yi that follow (1.1), and then letting Y ∗
i = (Yi)

1/α, i.e.

using g(t) = (t)1/α as in Theorem 1. It is readily verified that d/dt[g−1(t)] = h0(t) =

αtα−1. The advantage of a general Cox model is, of course, its flexibility in that the

transformation g(·) need not be specified except to satisfy (1.2).

2. Cox model with a time-change covariate

We discuss only Cox models with covariates that change in time as step functions.

This simplifies the model but is general enough according to Therneau (1999, p.18). In

practice the measurement of the covariate is usually taken at intervals, hence the step

function.

Similar to the previous section, here a regression model of piecewise exponential dis-

tributions becomes a Cox model with time-change covariates, after a monotone trans-

formation g(·).
We illustrate the idea using only one possible time-change point ti0 for each covariate.

Several time-change points can be dealt with similarly but the notation becomes tedious.

Piecewise exponential regression model: two pieces

Suppose we generate a random variable Yi that follows a 2-piece exponential distri-

bution, i.e. (see eg. Barlow and Proschan 1981, p.87)

hazard of Yi =

{
Ci1 for t ≤ g−1(ti0);
Ci2 for t > g−1(ti0).

(2.1)

(The cut-off point is so chosen to make it look simpler after transformation.) See below

for an Splus code to generate random numbers that follow 2-piece exponential distribu-

tions.

Introducing a time-fixed covariate zi1 and parameters β1, β2, we rewrite the positive

constants Ci1, Ci2 into a regression model using exponentials (as in (1.1))

Ci1 = exp[β1zi1],
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Ci2 = exp[β1zi1 + β2], (2.2)

where zi1 is the (fixed) covariate for Yi.

If we introduce a second, time-change covariate

zi2(t) =
{

0 for t ≤ ti0;
1 for t > ti0,

then

exp[β1zi1 + β2zi2(t)] =
{

Ci1 for t ≤ ti0
Ci2 otherwise.

(2.3)

Theorem 2 Suppose Yi, i = 1, 2, · · · , n are random variables with piecewise expo-

nential distributions as in (2.1)-(2.2). Further suppose g(·) is a monotone increasing

function as in (1.2) such that g−1(t) is differentiable. Then g(Yi) follows a Cox model

with a time-change covariate and a baseline hazard h0(t) = d/dt[g−1(t)].

Proof: We compute

P (g(Yi) > t) = P (Yi > g−1(t)) .

Since Yi is piecewise exponential, the above probability is

P (Yi > g−1(t)) =

{
exp[−Ci1g

−1(t)] if g−1(t) ≤ g−1(ti0) ;
exp[−Ci1g

−1(ti0)− Ci2(g
−1(t)− g−1(ti0))] otherwise.

If we let h0(t) = d/dt[g−1(t)] then the hazard function of g(Yi) is seen from above to be

hazard of g(Yi) =
{

Ci1 × h0(t) for t ≤ ti0
Ci2 × h0(t) otherwise.

In view of (2.3), we have

hazard of g(Yi) = h0(t)× exp[β1zi1 + β2zi2(t)] .

Therefore g(Yi) follows a Cox proportional hazards model with baseline hazard h0(t),

one time-change covariate zi2(t), and one time-fixed covariate zi1. ♦
Statistical inference for the piecewise exponential regression model can be simplified

by using the memoryless property of the exponential distribution. That is, if an observed

failure time Yi is 308 and there is a rate change at t0 = 200, then this observation

is equivalent to two independent observations: one with rate λ1, started at zero, but

censored at 200; and another with rate λ2, started at 200, and observed to fail at 308.
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This fact can be verified by comparing the two likelihood functions. This also explains

the way the data-frame is constructed to feed into the Splus function coxph, see Therneau

(1999, p.18). Or the new book by Therneau and Grambsch (2000) p. 69.

Remark: For stratified Cox model, there are several baseline hazards, one baseline

hazard for each stratum. In the exponential-transformation interpretation, this is equiv-

alent to several (different) transformations, one transformation g(·) for each stratum.

Remark: So far we have not introduced censoring in the model. The ability to handle

right-censored data for the inference procedures based on partial likelihood is evident,

since one can still write down the partial likelihood function without much extra effort

for data that are subject to right-censoring.

Remark: Why age is not a time-change covariate in the Cox model (where time is

measured the same way for every subject)? The hazard ratio would be dependent on the

difference of the two covariates (with exp link function). If two subjects’ age differ by 3

years in the beginning, then it will always be differing by 3 years. In other words, the

covariate age do change with time but since they all change the same way for every one,

their difference is always fixed. Therefore, we usually just take the age at the beginning

of the study, and as a fixed covariate.

However if the time is the ”exposure time to hazardous material” then the time

may not accumulate the same way for every person. In that case age would be a time

dependent covariate.

Remark: How about frailty model? Well we can use the transformation g as before,

The frailty only enters the model by changing the exponential parameters λi. The final

λ∗i has an extra multiplicative random effect term ωj(i), λ∗i = λi × ωj(i).

After this paper was published in The American Statistician, I become aware the

paper by Leemis, Shih and Reynertson (1990). They apparently also used the idea

of transforming the exponential random variables to get proportional hazards random

variables. The treatment of time-change covariate is slightly different.

Splus/R codes for generating data that follow Cox models

1. Cox model with fixed covariates.
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Assume we have the covariate zi (k by n matrix) and parameter beta0 (1 by k

vector) already created in Splus. Otherwise an example of zi and beta0 might be

> beta0 <- c(3, -1)

> zi <- matrix(c(1:50/10, runif(50)), nrow=2, ncol=50, byrow=TRUE)

The example below took g(·) as the square root function.

> lambdai <- exp(as.vector(crossprod(beta0, zi)))

> yi <- rexp(length(lambdai), rate=lambdai)

> gyi <- sqrt(yi) # or other increasing function

The responses are gyi with covariates zi. We are to estimate beta0 from gyi and

zi without knowing which g()̇ was used.

2. Cox model with one time-change covariate and other fixed covariates.

The new code needed here is for the generation of piecewise exponential random

variables Yi. The creation of covariates and the transformation on yi is similar to above.

We give below a function that transforms standard exponential random variables into a

(2-piece) piecewise exponential random variables.

The algorithm can be described as

[Generate Y ∼ exp(1)] ⇒
{

if [Y ≤ t0r1] return Y/r1.
if [Y > t0r1] return t0 + (Y − t0r1)/r2.

The following R/Splus code implements this algorithm in a vectorized way. Suppose

we want a vector of piecewise exponential random variables with rates r1 and r2 before

and after t0. Here r1, r2 and t0 are all vectors of length n. The input y below should

be a sample of n random variables from the standard exponential distribution.

> piecewiseexp <- function(r1, r2, t0, y) {

val1 <- pmin(y, t0*r1)/r1

val1 + pmax((y-t0*r1), 0)/r2 }

Once the above function is defined, we can get, for example, 3 independent 2-piece

exponential random variables by

> piecewiseexp(r1=c(1,2,3), r2=c(5,6,7), t0=c(3.5,6,8.2), y=rexp(3))
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The first random variable generated will have hazard 1 for t ≤ 3.5 and hazard 5 for

t > 3.5, etc.

3. Stratified Cox models with time fixed covariates.

Separate all the yi into two groups. We use two different monotone transformations

g1(·) and g2(·) for each of the groups. This way we get a Cox model with two strata.

4. Frailty models.

Here we need a random term generated from the gamma distribution and this affects

the rate of the exponential distribution, lambdai.

We first generate the frailty term:

litterindex <- c(rep(1,10), rep(3,10), rep(5,10), rep(7,10), rep(9,10))

temp <- rgamma(5, shape=1)

omigai <- temp[ceiling(1:50/10)]

We then replace the first line of code in 1) by the following line.

lambdai <- omigai * exp(as.vector(crossprod(beta0, zi)))

So the first 10 lambdai share a frailty, temp[1], the second 10 lambdai share a frailty,

temp[2] etc. Once we got the lambdai, the generation of yi, gyi and cengyi are the

same as before. The fit of the frailty model can be accomplished by Splus (for censored

responses):

coxph( Surv(cengyi, delta) ~ t(zi) + frailty(litterindex) )

5. Right censoring.

A big advantage of the Cox model over ordinary regression model is that the inference

procedures for Cox model can easily handle right-censored responses Yi. Given gyi’s,

the following code generates censored gyi’s, in the form of cengyi (= min(Yi, Ci)) and

delta (indicator of censoring).

> cen <- rexp(length(gyi), rate=0.1) # or other censoring variables

> cengyi <- pmin(gyi, cen)

> delta <- as.numeric(cen>=gyi)

The above code also works in R, which is a free software similar to Splus.
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