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Abstract

Most existing semi-parametric estimation procedures for binary choice models are
based on the maximum score, maximum likelihood, or nonlinear least squares
principles. These methods have two problems. They are difficult to compute and
they may result in multiple local optima because they require optimizing nonlinear
objective functions which may not be unimode. These problems are exacerbated
when the number of explanatory variables increases or the sample size is large
(Manski, 1975, 1985; Manski and Thompson, 1986; Cosslett, 1983; Ichimura, 1993;
Horowitz, 1992; and Klein and Spady, 1993).

In this paper, we propose an easy-to-compute semi-parametric estimator for
binary choice models. The proposed method takes a completely different approach
from the existing methods. The method is based on a semi-parametric interpreta-
tion of the Expectation and Maximization (EM) principle (Dempster et al, 1977)
and the least squares approach. By using the least squares method, the proposed
method computes quickly and is immune to the problem of multiple local maxima.
Furthermore, the computing time is not dramatically affected by the number of
explanatory variables. The method compares favorably with other existing semi-
parametric methods in our Monte Carlo studies. The simulation results indicate
that the proposed estimator is, 1) easy-to-compute and fast, 2) insensitive to initial
estimates, 3) appears to be

√
n-consistent and asymptotically normal, and, 4) bet-

ter than other semi-parametric estimators in terms of finite sample performances.
The distinct advantages of the proposed method offer good potential for practical
applications of semi-parametric estimation of binary choice models.

Keywords: Binary choice models, EM algorithm, least squares method, semi-parametric
estimation.



1. Introduction

Binary choice models are widely used in economics, marketing and other social sciences
(Maddala, 1983; Greene, 1993). Recent studies have shown that popular parametric
methods, such as the Probit and Logit methods, will cause inconsistency in parameter
estimation and misleading predictions of behavior when the error distribution is not
normal or logistic (Huber, 1967; Horowitz 1992). As a result, many researchers have
tried to avoid restrictive distributional assumptions and advocated semi-parametric
estimation methods for binary choice models in recent years (Manski, 1975, 1985;
Cosslett, 1983; Klein and Spady, 1993; Ichimura, 1993; Ichimura and Thompson, 1993;
Sherman, 1993; Matzkin, 1992; Horowitz, 1992; and Gabler, Laisney and Lechner,
1993). Horowitz (1992, 1994) and Gabler, Laisney and Lechner (1993) also provide
excellent summary of these methods.

There are two major disadvantages associated with the existing semi-parametric
estimation methods. First, they are difficult to compute, and second, they may generate
multiple local optima because they require optimizing nonlinear objective functions
which may not be unimode. These problems are exacerbated when the number of
explanatory variables increases or the sample size is large (Manski, 1975, 1985; Manski
and Thompson, 1986; Cosslett, 1983; Ichimura, 1993; Horowitz, 1992; and Klein and
Spady, 1993). Existing semi-parametric methods also need a very large sample size to
“obtain the benefits promised by asymptotic theory” (Horowitz, 1992).

In this paper, we propose an easy-to-compute semi-parametric estimator for bi-
nary choice models. The methodology is completely different from the existing semi-
parametric estimation methods for binary choice models. The proposed method is
based on a semi-parametric interpretation of the Expectation and Maximization (EM)
principle (Dempster et al, 1977) and the least squares approach. By using the least
squares method, the estimator computes quickly and is immune to the problem of mul-
tiple local maxima. Furthermore, the computing time is not dramatically affected by
the number of explanatory variables. Other semi-parametric methods require more (ex-
ponentially increasing) computing time or become computationally intractable as the
number of explanatory variables increases. We are not aware of any simulation study
which deals with models with more than two explanatory variables in the literature.
The method compares favorably with other existing semi-parametric methods in our
Monte Carlo studies. The simulation results indicate that the estimator is, 1) easy-to-
compute and fast, 2) insensitive to initial estimates, 3) appears to be

√
n-consistent and

asymptotically normal, and, 4) better than other semi-parametric estimators, such as
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the Maximum Score (MS), Smoothed Maximum Score (SMS)1, Semi-parametric Max-
imum Likelihood (Cosslett, 1983), and Klein and Spady (1993) estimators in terms of
finite sample performances.

The approach is not completely general, since it requires homoskedastic errors. This
is a common requirement in many existing methods. Nevertheless, the proposed method
is very promising and offers great potential for practical applications of semi-parametric
estimation of binary choice models.

The paper is organized as follows. We describe the proposed method and the esti-
mator in section 2. Large sample properties of the estimator are discussed heuristically
in section 3. Section 4 presents the results of Monte Carlo experiments with various
designs to illustrate as well as to compare the proposed method with other methods for
finite sample sizes. We also discuss some important issues such as the consistency, rate
of convergence, asymptotic normality of the estimator, relative efficiency of the pro-
posed estimator to other estimators, the choice of initial estimates and the computing
times of the estimator. The concluding remarks are given in section 5. Some technical
remarks are in the Appendix. Tables and figures are attached to the end of the paper.

2. The Estimator

In this section, we outline the semi-parametric method for estimating binary choice
models. The approach is very intuitive and relies on the least squares method.

The binary choice model we want to estimate is of the following form:

yi =

{
1 if y∗i = xiβ + εi > 0, i = 1, . . . , n

0 otherwise,
(1)

where xi is a row vector of explanatory variables, yi is a binary response indicator, y∗i
is a latent variable, β is a vector of unknown parameters to be estimated from data,
and the εi’s, which follow the continuous cumulative distribution function F (·), are
independent and identically distributed with zero mean and finite variance.

In equation (1), the indicator yi, rather than the underlying response variable y∗i , is
observed. However, if we are able to obtain a “good” estimate of y∗i , then we can apply
the powerful least squares method to estimate β. The conditional expectation of y∗i ,

1The MS and SMS methods are designed for binary choice models with symmetric (can be het-

eroskedastic) errors, while the proposed model is designed for binary choice models with mean zero and

homoskedastic errors. The comparison between the proposed method and the MS or SMS method is

based on symmetric and homoskedastic errors with zero mean in the simulation studies.
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E(y∗i |xiβ, yi) is used as the estimate of y∗i in this paper. To estimate β, the following
steps are performed:

Step 1: Obtain an initial estimate of β, using the linear probability, Probit, or
Logit method. Denote the initial estimate as β̂ (|β̂1| is normalized to 1)2.

Step 2: From observations (xi, yi)n
1 and β̂, use Ayer et al.’s (1955) algorithm

to obtain the non-parametric maximum likelihood estimate of F (·), the cumulative
distribution of εi in model (1). Denote this estimate as F̂ (·). This algorithm only
defines F̂ (·) at n points. F̂ (·) can be any value besides these n points as long as
it is nondecreasing. For convenience, we adopt linear interpolation between any two
adjoining points. The details of the algorithm are provided in the Appendix.

Step 3: Compute ŷ∗i = E(y∗i |xiβ̂, yi) as follows:

ŷ∗i = E(y∗i |xiβ̂, yi) =


xiβ̂ +

∫∞
−xiβ̂

εdF̂ (ε)

1−F̂ (−xiβ)
if yi = 1

xiβ̂ +
∫ −xiβ̂

−∞ εdF̂ (ε)

F̂ (−xiβ̂)
if yi = 0,

(2)

where F̂ (·) is from the previous step3.
Step 4: Fit ordinary least squares by regressing ŷ∗i on xi to obtain a new β̂.
Step 5: Repeat steps 2-4 until the iterative process converges according to a pre-

specified criterion.
The proposed estimator is a semi-parametric estimator, since F (·) is not specified in

the method. The method is also an application of the Expectation and Maximization
(EM) algorithm. The E-step is performed in a nonparametric fashion and the M-step
is performed by the least squares method4.

2Equation (1) is invariant through multiplication of β and εi by a scalar, some normalization is

necessary. Without loss of generality, we choose |β1| = 1 in this paper.
3Since F̂ (·) is a piece-wise linear function by construction, the integration term

∫∞
−xiβ̂

εdF̂ (ε) in (2)

can be computed easily as∑
tj=−x(j)β̂≥−x(i)β̂

[F̂ (tj+1) − F̂ (tj)][tj+1 + tj ]/2.

4The proposed estimator is in fact the iterative solution to the following self-consistent equation:

β = (
∑

x′ixi)
−1

∑
ŷ∗i (β)x′i,

where ŷ∗i (β) = E(y∗i |xiβ, yi) = xiβ + yi

∫∞
−xiβ

εdF̂ (ε)

1−F̂ (−xiβ)
+ (1 − yi)

∫ −xiβ

−∞
εdF̂ (ε)

F̂ (−xiβ)
.
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3. Large Sample Properties of the Proposed Estimator and

Identification

In this section, we will discuss the asymptotic properties of β̂ using heuristic arguments
and then support our conjectures using simulations with various designs in the next
section.

Consistency: Consider the simple case where only one explanatory variable is included
in model (1), i.e., y∗i = α + βxi + εi. The estimate of the intercept α is normalized to
be 1. The proposed slope estimator β̂ is, in fact, the solution of the following “normal”
equation:

1
n

n∑
i=1

[E(y∗i |β̂xi, yi)− 1− β̂xi]xi = 0.

Substituting E(y∗i |yi, β̂xi) = 1 + β̂xi + yi

∫∞
−β̂xi

εdF̂ (ε)

1−F̂ (−β̂xi)
+ (1 − yi)

∫ −β̂xi
−∞ εdF̂ (ε)

F̂ (−β̂xi)
, the normal

equation becomes

1
n

n∑
i=1

yi

∫∞
−β̂xi

εdF̂ (ε)

1− F̂ (−β̂xi)
+ (1− yi)

∫−β̂xi
−∞ εdF̂ (ε)

F̂ (−β̂xi)

 xi = 0 (3)

Since the mean of ε is zero, we have∫ ∞

−β̂xi

εdF̂ (ε) = −
∫ −β̂xi

−∞
εdF̂ (ε) > 0.

The normal equation can be written as

1
n

n∑
i=1

ŵi(−β̂xi)[yi − (1− F̂ (−β̂xi))]xi = 0,

where ŵi(t) =
∫∞

t
εdF̂ (ε)

F̂ (t)[1−F̂ (t)]
, which is always positive.

To study the properties of the above normal equation, we will first consider a
simplified version of the normal equation

S(β̂, F̂ ) =
1
n

n∑
i=1

[yi − (1− F̂ (−β̂xi))]xi = 0. (4)

This can be done by adding weights 1/ŵi(−β̂xi) in Step 4 (linear regression) in the
iterative scheme described in the last section.

The solution to the above equation, the estimate β̂, is likely to be consistent for the
following reasons.
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First, for the true value, β∗, F̂ (t) P→ F (t) for any given t (Pollard, 1984).
Second, for the true value, β∗, we have

S(β∗, F̂ ) = S(β∗, F ) + S(β∗, F̂ )− S(β∗, F ),

and notice that

S(β∗, F̂ )− S(β∗, F ) =
1
n

∑
[F̂ (−β∗xi)− F (−β∗xi)]xi

= c0 ·
∫ +∞

−∞
t[F̂ (t)− F (t)]dGn(t),

where c0 is some constant, Gn(t) is the empirical CDF of −βxi. By the theory of
uniform consistency of empirical CDF (see, eg. Pollard, 1984. Page 24-36),

S(β∗, F̂ )− S(β∗, F ) = c0 ·
∫ +∞

−∞
t[F̂ (t)− F (t)]dG(t) + op(1).

By the general theory on differentiable functionals (see e.g., van der Vaart; 1991) and
Groeneboon and Wellner (1992; Therorem 5.5, Page 114), we have

√
n

∫ ∞

−∞
t[F̂ (t)− F (t)]dG(t) D→ N(0, σ2), (5)

where σ2 is some variance. Therefore,

S(β∗, F̂ ) = S(β∗, F ) + op(1).

By standard arguments for parametric models (Amemiya; 1985), the solution of
S(β, F ) = 0 is consistent (e.g., converges to the true value, β∗). In view of the above
approximation, we expect that S(β, F̂ ) = 0 also has a solution which is consistent.

Asymptotic Normality: In the iterative scheme we described in Section 2, the esti-
mated F̂ (ε) is obtained using Ayer’s et al (1955) algorithm, and the resulting function
is a piece-wise linear function. This F̂ (ε) is convenient in computing E(y∗i |βxi, yi),
but it is not very convenient in deriving asymptotic properties of β̂, because it is not
continuously differentiable. In principle, we can use any smooth F̂ (ε), for example, the
kernel based F̂ (ε) which is continuously differentiable (Ichimura, 1993) in the iterative
scheme. The proof of the asymptotic normality of β̂ using the smoothed F̂ (ε) can
proceed as follows. Using Taylor expansion, we can expand S(β̂, F̂ ) around β∗:

S(β̂, F̂ ) =
∑

[yi − (1− F̂ (−β∗xi))]xi −
∑

f̂(−β̃xi)x2
i (β̂ − β∗) = 0,
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where f̂(t) = ∂F̂ (t)/∂t, and β̃ lies between β̂ and β∗. Thus, we have

√
n(β̂ − β∗) = [

1
n

∑
f̂(−β̃xi)x2

i ]
−1 1√

n

∑
[yi − 1 + F̂ (−β∗xi)]xi.

Under certain regularity conditions (such as, f̂ being bounded continuous functions
converging uniformly to f), the law of large number will guarantee that

1
n

∑
f̂(−β̃xi)x2

i
P→ limn→∞

1
n

∑
E[f(−β∗xi)]x2

i = K (say),

where f(t) = ∂F (t)/∂t (assuming that F (t) is continuously differentiable).
The second part of

√
n(β̂ − β∗) can be decomposed into two parts:

1√
n

∑
[yi − 1 + F̂ (−β∗xi)]xi = C1 + C2,

where C1 = 1√
n

∑
[yi − 1 + F (−β∗xi)]xi, and C2 = 1√

n

∑
[F̂ (−β∗xi)− F (−β∗xi)]xi.

By the central limit theorem, it is easy to show that C1 D→ N(0, σ2
1) where σ2

1 is
some variance. By Groeneboom and Wellner (Theorem 5.5, 1992), C2 D→ N(0, σ2

2),
where σ2

2 is some variance. Then the Cramer-Wold device may be used to show that
√

n(β̂ − β∗)
D→ N(0, σ2

∗), where σ2
∗ is some variance which involves K, σ2

1, σ2
2 and the

covariance between C1 and C2.

Efficiency: Since εi has mean zero, we have
∫∞
−β̂xi

εdF̂ (ε) = −
∫−β̂xi
−∞ εdF̂ (ε), and (3)

becomes
1
n

n∑
i=1

yi

∫∞
−β̂xi

εdF̂ (ε)

1− F̂ (−β̂xi)
+ (1− yi)

−
∫∞
−β̂xi

εdF̂ (ε)

F̂ (−β̂xi)

 xi = 0.

In particular, if the error terms εi follow the standard normal distribution, then
F (ε) = Φ(ε) and

∫∞
−β̂xi

εdF (ε) = f(−β̂xi). Therefore in this case the only difference
between the above equation and Probit FOC is that one uses F̂ and the other uses F .

This also leads us to conjecture that our estimator is efficient when the error terms
are normally distributed.

Identification: This estimation method requires at least one explanatory variable to
be continuous and have support on all of R (the real line), otherwise, F̂ (ε) will not
converge to F (ε). By construction, F̂ (ε) is only defined at n points, (−xiβ)n

1 (Ayer et
al., 1955) and can be any value between these n points as long as it is not decreasing
(we use linear interpolation between any two adjoining points in this paper). If xi’s
are continuous, then the number of distinct −xiβ’s will increase with the sample size
n. As n goes to infinity, F̂ (ε) will converge to the underlying F (ε). If xi’s are discrete,
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then the number of distinct −xiβ’s will be the same regardless the sample size n. Con-
sequently, F̂ (ε) is fixed and independent of the sample size. Therefore, we would not
expect that F̂ (ε) to converge to F (ε).

4. Monte Carlo Study

In this section, Monte Carlo experiments with various designs are used to illustrate as
well as to compare the proposed method with other methods for finite sample sizes. The
first Monte Carlo design follows that of Horowitz (1992) with only one parameter β to
be estimated. Symmetric error terms are used by Horowitz. In the second experiment,
Cosslett’s (1986) designs with both symmetric and asymmetric error distributions are
used. In the third experiment, we estimate equation (1) with eight explanatory vari-
ables to demonstrate the potential of the proposed approach for empirical applications.
We also present the variance estimate of the estimator using the bootstrap method
(Efron, 1982) for the sample in the third experiment.

Experiment 1 (random design, symmetric errors): we want to estimate β in the
following model:

yi =

{
1 if y∗i = αxi1 + βxi2 + εi > 0
0 otherwise,

where (α, β) = (1, 1), xi1 ∼ N(0, 1), and xi2 ∼ N(1, 1). The random error εi is
generated from the following distributions with each distribution corresponding to one
experiment5. They are:

L: εi ∼ logistic with median 0 and variance 1;
U : εi ∼ uniform with median 0 and variance 1;
T3: εi ∼ Student’s t with 3 degrees of freedom normalized to have variance 1.

To compare our results with Horowitz’s, the mean bias and the variance of different
estimators are computed for three different sample sizes 250, 500 and 1000. There are
1000 replications per experiment (random design). The model is estimated without
the intercept. The coefficient of xi1, α, is normalized to 1 for identification purposes.
The estimate of β via the linear probability method is used as the starting value of the
proposed estimator. Since there is only one coefficient to be estimated, |β̂t − β̂t−1| <

5Horowitz (1992) also has another error distribution which is heteroskedastic. We do not include

this error distribution in the simulation, since the proposed estimator is based on homoskedastic errors
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10−4 is used as convergence criterion. The results of Experiment 1 are summarized in
Table 1.

—–Insert Table 1 here—–

Table 1 compares the variance and bias of the proposed estimator (W-Z in Table 1)
with that of three other estimators, including the Logit, the Maximum Score (MS), the
Smoothed Maximum Score (SMS) estimators. Results of Logit, MS and SMS estima-
tors are cited from Horowitz (1992) when sample sizes are 250, 500 and 1000. Horowitz
reported the mean squared errors (MSE), not the variances of the Logit, MS and SMS
estimators. To facilitate the comparisons among various estimators, variances of the
estimators are reported here. The variance can be easily reproduced by MSE−Bias2

for the Logit, MS and SMS estimators. The results of the proposed estimator is added
in Table 1 for the sample size of 2000. Due to different random number generators
and possibly different convergence criteria, our results cannot be directly compared to
Horowitz’s. Since there are 1000 trials in each simulation, we expect the difference
resulting from different random number generators to be negligible. To compare the
proposed estimator and other estimators, several issues, including the consistency, rate
of convergency, asymptotic normality, relative efficiency, choices of the initial estimate
and the computing times of the proposed estimator are discussed below.

Consistency: The proposed estimator exhibits a much smaller finite sample bias
(ranging from 1.1% to 2.7%) than the SMS estimator (bias varies between 3.8% and
13.3%) for three different sample sizes and three error distributions. When the sample
size is 500, the proposed estimator has smaller bias than the MS estimator for three
error distributions. It also has smaller bias than the MS estimator with the uniform
distribution, but larger bias with the logistic and T3 distributions when the sample
size is 250 or 1000. The bias of the estimator also declines as the sample sizes increase
for the logistic and T3 distributions. For the uniform error distribution, the bias of
the estimator first decreases from 0.0176 to 0.0101 as n increases from 250 to 500, then
increases a little bit to 0.0107 when n reaches to 1000, and then quickly reduces to
0.0084 as n goes to 2000.

Rate of convergence: To compare the rates of convergence among various estimators,
we study the change of variance for each estimator as the sample size doubles by
constructing Table 2 from Table 1.

—–Insert Table 2 here—–
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Table 2 confirms that the Logit estimator is
√

n−convergent, because its variance is
approximately halved as the sample size doubles. As shown in Table 2, the variance of
the proposed estimator is also approximately halved as the sample size doubles for three
error distributions. Furthermore, variance ratios (V ar500/V ar250, V ar1000/V ar500, or
V ar2000/V ar1000 ) are quite stable for the suggested estimator for three error distri-
butions. For example, the variance ratios are 0.5337, 0.5350 and 0.5471 for L, U and
T3 distributions, respectively when the sample size doubles from 250 to 500 (Table 2).
This supports the conjecture that the proposed estimator is

√
n−consistent and enjoys

the “benefits promised by asymptotic theory” for relatively small sample sizes, such as
250.

The MS estimator is 3
√

n-convergent (Kim and Pollard, 1990), which means that
as the sample size doubles, the new variance of the MS estimator will be 0.63 (=2−

2
3 )

of the original variance. According to Horowitz (1992), the rate of convergence for the
SMS estimator in Experiment 1 is n

4
9 . In other words, as the sample size doubles, the

new variance of the SMS estimator will be 0.54 (=2−
8
9 ) of the original variance. The

finite sample results of MS and SMS do not agree with their asymptotic properties for
sample sizes up to 1000. Furthermore, variance ratios are not stable for either MS or
SMS estimator for three error distributions as the sample size doubles. For example,
the variance ratios (for MS) are 0.6523, 0.4352 and 0.5835 for L, U and T3 distribu-
tions, respectively when the sample size doubles from 250 to 500. This means that
the asymptotic has not “kicked in” yet. As noted in Horowitz (1992, p.518), “large
samples are needed to obtain the benefits promised by asymptotic theory” for MS and
SMS estimators. It is also noted that the variances of MS and SMS estimators are
much larger than that of the proposed estimator in all the situations reported in Table
1.

Asymptotic normality: There are 1000 estimates of β’s in Experiment 1 for each
error distribution. The attached Figure 1 shows the histograms of these 1000 estimates
of β’s when the sample size is 1000. These histograms closely resemble the distribution
of normal variables.

—–Insert Figure 1 here—–

Relative efficiency: The relative efficiencies of various semi-parametric estimators
with the Logit error distribution are presented in Table 1. The Logit model is fully
(100%) efficient with the logistic error distribution. The suggested estimator has bet-
ter finite sample performances than the MS and SMS estimators do. For example, the
estimator is 79%(= 0.0152/0.0193) efficient when the sample size is 250. However, MS
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and SMS estimators are only 20% and 28% efficient when n = 250, respectively. When
the sample size is 1000, the estimator is 86% efficient, while MS and SMS are 15% and
44% efficient, respectively.

To further investigate the efficiency of the suggested estimator, we compare the
performances between the proposed and Klein and Spady (K-S) estimators. The K-S
estimator is supposed to attain the semi-parametric efficiency lower bound (Klein and
Spady, 1993, p.405). The experiment in Klein and Spady (1993) is reviewed as follows:

yi =

{
1 if y∗i = β1xi1 + β2xi2 + εi > 0
0 otherwise,

for i = 1, ..., 100. xi1 is a chi-squared variable with 3 degrees of freedom truncated
at 6 and standardized to have zero mean and unit variance; xi2 is a standard normal
variable truncated at ±2 and similarly standardized. xi1 and xi2 are independently
and identically distributed. The εi’s are from the standard normal distribution. The
number of replication is 1,000. The normalization is set to be |β1| + |β2| = 2. The
convergence criterion is ||β̂t − β̂t−1||2 < 10−8. Results for β1 are displayed in Table 3.

—–Insert Table 3 here—–

Results for the Probit and K-S estimators are directly cited from Klein and Spady
(1993, p. 406). As illustrated in Table 3, the proposed estimator has better sample
performances than the K-S estimator does. The estimator is 88% efficient while the
K-S estimator is only 78% efficient when the sample size is 100.

Initial estimates: It would be the best to use a
√

n-consistent initial estimate for the
proposed method. However, based on the simulations reported here, the estimator is
very insensitive to initial estimates. For example, in Experiment 1, the true value of
β is 1. Initial values ranging from −28 to +28 are used to investigate the sensitivity
of the estimator. After three or four iterations, the estimate β̂ becomes very close to
1. The same phenomena were also observed in Experiments 2 and 3, which will be
reported shortly.

The proposed approach is an iterative scheme. It may face the problem of noncon-
vergence, especially for small sample sizes, because the estimated F̂ (·) is not continuous
in β. Based on the simulation, the proposed algorithm may oscillate between two val-
ues (both of which are very close to the true value). First, β̂ monotonically goes to
one of the two oscillating points. Then the oscillation takes place. As the sample size
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increases, F̂ (·) becomes “less discontinuous” and the oscillation is less severe. Asymp-
totically, F̂ (·) is continuous as long as the true F (·) is continuous. For practical purpose,
if the sample size is small and the proposed estimator swings between two values, we
can take the average of these two values, or any value in between. This is also the
strategy adopted in Buckley and James (1979) for censored regression models.

In Experiment 1, the Logit estimator performs well for the symmetric error dis-
tributions, although the Logit model is misspecified with the U and T3 distributions.
This may due to the fact that the explanatory variables in Experiment 1 are generated
from normal distributions. Ruud (1983) shows that the Probit estimator is consistent
when explanatory variables are jointly normal. It is also known that the Probit esti-
mator is very close to the Logit estimator. In the next experiment, we will use designs
in Cosslett (1986) to compare the performances among the proposed estimator, Probit,
Maximum Score, Maximum Rank Correlation (MRC) (Han, 1987), Semi-parametric
Maximum Likelihood (SML) (Cosslett, 1983) estimators.

Experiment 2: Consider a binary choice model with two explanatory variables:

yi =

{
1 if y∗i = α0 + β1xi1 + β2xi2 + εi > 0
0 otherwise.

The true parameter values are α0 = 0, β1 = 1, and β2 = −2.
To generate the explanatory variables x1 and x2, two cases were considered:
(A) standard normal, x1, x2 ∼ N(0,1);
(B) standardized exponential, x1, x2 ∼ exp(1) - 1.
The error distributions were normal mixtures with zero mean. Three cases were

included in the experiment:
(1) εi ∼ N(0, 1);
(2) εi ∼ 0.75 ∗N(0, 1) + 0.25 ∗N(0, 5)

(standard deviation 2.65; skewness 0; kurtosis 6.61);
(3) εi ∼ 0.75 ∗N(−0.5, 1) + 0.25 ∗N(1.5, 5)

(standard deviation 2.78; skewness 1.29; kurtosis 6.29).
Two different sample sizes, 250 and 1000, were used in the experiment. There are

1000 replications. The coefficient β1 is normalized to 1. Since only one parameter β2

has to be estimated, |β̂2(t) − β̂2(t−1)| < 10−4 is used as the convergence criterion. We
report the mean bias and the root mean squared error (RMSE) of the estimates of β2

for various estimators mentioned above in Tables 4.

—–Insert Table 4 here—–
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In Table 4, results for Probit, MS, MRC, SML and SML-1 (one-step iterative im-
provement over SML, see Cosslett, 1986) are cited from Cosslett (1986). Because there
are 1000 trials in the simulation, we expect that the difference resulting from different
random number generators to be negligible.

When x1 and x2 are both N(0, 1), the Probit estimator is consistent even the errors
are not from N(0, 1). The proposed estimator, SML-1 and the Probit estimator produce
very similar results. They compare favorably with other semi-parametric estimators.
When the two explanatory variables x1 and x2 are both standardized exponentials,
the Probit estimator is inconsistent when the errors are misspecified. The proposed
estimator performs better than other estimators, especially when the errors are from
M2, the mixture (of normals) with thicker tails and skewness.

The power of the proposed estimator lies on its ability to handle models with
many explanatory variables and large sample sizes. The next experiment with eight
explanatory variables is a more realistic example for empirical applications. Exist-
ing semi-parametric methods become computationally intractable for this experiment.
This experiment is the first one in literature to our knowledge.

Experiment 3 (fixed design, 8 explanatory variables):

yi =

{
1 if y∗i = β0 +

∑8
j=1 βjxij + εi > 0

0 otherwise.

where (βj , j = 0, . . . , 8) = (0, 1, 1, 1,−1, 0.5, 1.3, 1,−0.5), x1 ∼ N(0, 1), x2 ∼ N(1, 1)
and x3 is a binary variable, taking 1 and 0 with equal probabilities. x4 is also a
discrete random variable, taking 0, 1, 2, 3, 4 and 5 with equal probabilities. x5 is a
binary variable, taking 0 with probability 0.9 and 1 with probability 0.1. x6 is a discrete
variable, taking 0, 1 and 2 with probabilities 0.5, 0.375 and 0.125, respectively. x7 and
x8 are generated from the uniform distribution u[0, 2] and the Chi-square distribution
with 3 degrees of freedom, respectively. The sample size is 1000. The explanatory
variables are generated only once (fix design). The random error is generated 1000 times
from N(0, 2). Since there are eight coefficients to be estimated, ||β̂t − β̂t−1||2 < 10−8

is used as the convergence criterion for the iteration process. Table 5 summaries the
simulation results for the Logit estimator and the proposed estimator.

—–Insert Table 5 here—–

Since the error distribution is normal, the “slightly misspecified” Logit model pro-
duces good results as expected. However, the suggested estimator performs even better.
The estimator has smaller bias than the Logit estimator for all the eight coefficients.

12



The variances of the estimates are either smaller than or comparable to the variances of
the Logit estimates. Table 5 also includes the results of the proposed estimator for sam-
ple size 2000. As the sample size increases from 1000 to 2000, the bias of the estimator
drops substantially. The variance of the estimator is also approximately halved. The
attached Figure 2 shows the histograms of the 1000 estimates of βi’s when the sample
size is 2,000. The histograms closely resemble the distribution of normal variables.
This again suggests that the proposed estimator is

√
n−consistent and asymptotically

normal.

—–Insert Figure 2 here—–

Computing times of the proposed estimator: The proposed method computes β̂

very quickly, since the computation time of Step 2 is almost independent of the number
of explanatory variables. Step 3 computes simple summations. And Step 4 uses OLS,
which is minimal in terms of computing time. The mean computing times (in seconds,
on a HP730 workstation) for one replication in Experiments 1 and 3 are documented
in Table 6.

—–Insert Table 6 here—–

The reported computing times include the times for generating random numbers,
input and output, so the actual computing times are even less.

The variance of the proposed estimator: It is difficult to obtain the analytical
solution for the variance of the proposed estimator. Different resampling methods
(Efron, 1982; Wu, 1986), can be used to obtain the variance estimate for β̂. They
are commonly used methods for estimating variances of semi-parametric estimators
(Horowitz, 1992). Resampling methods are appropriate for the proposed method, since
the estimator computes very fast as shown earlier. Table 7 reports the bootstrap (Efron,
1982) variance estimate of β̂ for one sample (n = 1, 000) used in Experiment 3.

—–Insert Table 7 here—–

For the same sample size (n = 1000), the bootstrap variance estimates of β̂i’s are
slightly smaller than the variances of β̂i’s reported in Table 5. This may due to the
particular sample selected.
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5. Conclusions

In this paper, we proposed an easy-to-compute semi-parametric estimation method for
binary choice models. The methodology is significantly different from the existing
methods. The proposed estimator computes very fast and compares favorably with
other semi-parametric estimators, including the MS, SMS, SML, MRC, and Klein-
Spady estimators, in Monte Carlo studies. The method is especially useful when mul-
tiple explanatory variables are included in binary choice models or the sample size is
large. This proposed approach opens a new avenue for empirical applications of the
semi-parametric estimation of binary choice models.

The proposed method can be extended to ordered multiple choice models as long as
there are some “good” semi-parametric estimates of F (ε). This is the topic for future
research.
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Appendix: Non-Parametric Maximum Likelihood Estimator of F (·)
Ayer et al. (1955) provides an algorithm, to estimate F (·) based on the ordered (ascending

order in −xiβ) observation pairs (y(i),−x(i)β)n
1 for any given value of β. The reader is referred

to Cosslett (1983, p.772) for a heuristic explanation of this procedure and Amemiya (1985,
p.347) for a simple numerical example. The algorithm proceeds as follows:

(i) Rank-ordering: rearrange pairs (yi,−xiβ) such that −xiβ is in ascending order. Denote
the new sequence as (y(i),−x(i)β).

(ii) Isotonizing: group the new sequence such that there is a group boundary between
observations j and j + 1 if and only if y(j) = 0 and y(j+1) = 1. In other words, every group
consists of only one non-increasing (in y(i)) sequence. Assume there are K groups.

(iii) Computing the proportion of ones in each group: there are K values, (p1, . . . , pK),
for K groups. The empirical counterpart of F (·) is defined as F̂ (−x(i)β) = pk for the (i)th
observation in kth group.

(iv) If pk < pk−1 for some k, then combine group (k− 1) and group k and repeat Step (iii)
until F̂ (·) is a nondecreasing function.

This algorithm produces the non-parametric maximum likelihood estimate (NPMLE)6 F̂ (·).
Since F̂ (ε) depends only on the rank but not the magnitude, of −xiβ, we normalize on the
parameters. The conversion adopted in this paper is to set β1 = 1. Leurgans (1982) can be
used to show that F̂ (t) is 3

√
n-consistent for any given t.

This algorithm only defines F̂ (·) at n points. F̂ (·) can be any value besides these n points
as long as it is nondecreasing. For convenience, we adopt linear interpolation between any
two adjoining points. At the first and the last points, we adopt the following convention: if
F̂ (−x(1)β) is not zero, then we define F̂ (−x(1)β − 2) = 0; if F̂ (−x(n)β) 6= 1, then we define
F̂ (−x(n)β + 2) = 1. This is equivalent to connecting an exponential distribution exp(1) to the
end points as far as equation (2) is concerned.

6It is interesting to note that the NPMLE F̂ (·) can also be obtained as an isotonic least squares

estimator, i.e.,

min
F (·)

n∑
1

(1 − y(i) − F (−x(i)β))2, subject to F (·) nondecreasing.
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TABLE 1: Comparison among various estimators∗, (random design, symmetric error
distributions.)

Estimator Error 1:L Error 2:U Error 3:T3

n=250 VAR Bias Rel. Eff. VAR Bias VAR Bias

Logit .0152 .0020 100% .0205 .0064 .0273 .0237

MS .0768 -.0061 20% .1843 .0656 .1126 .0027

SMS .0419 .1092 28% .1203 .1329 .0484 .0797

W-Z .0193 -.0268 79% .0200 -.0176 .0170 -.0255

n=500 VAR Bias Rel. Eff. VAR Bias VAR Bias

Logit .0076 .0089 100% .0099 -.0023 .0127 .0080

MS .0501 .0239 15% .0802 .0213 .0657 .0224

SMS .0192 .0826 40% .0438 .0760 .0426 .0652

W-Z .0103 -.0178 74% .0107 -.0101 .0093 -.0169

n=1000 VAR Bias Rel. Eff. VAR Bias VAR Bias

Logit .0039 .0003 100% .0047 -.0014 .0060 .0050

MS .0261 .0064 15% .0512 .0196 .0373 .0050

SMS .0088 .0620 44% .0180 .0465 .0156 .0377

W-Z .0045 -.0169 86% .0047 -.0107 .0043 -.0159

n=2000 VAR Bias Rel. Eff. VAR Bias VAR Bias

W-Z .0023 -.0131 87% .0023 -.0084 .0022 -.0133

∗ : L =logistic, U =uniform, T3 =student’s t with 3 degrees of freedom. 2 explanatory
variables. Explanatory variables and random errors are generated 1000 times.
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TABLE 2: Comparison of the rates of convergence among various estimators∗ as the
sample size doubles.

Estimator Error 1:L Error 2:U Error 3:T3

n=250 to 500 Asy. Var. Ratio Var. Ratio Var. Ratio Var. Ratio

Logit 0.500 .5013 .4829 .4652

MS 0.630 .6523 .4352 .5835

SMS 0.540 .4575 .3641 .8802

W-Z 0.500∗∗ .5337 .5350 .5471

n=500 to 1000 Asy. Var. Ratio Var. Ratio Var. Ratio Var. Ratio

Logit 0.500 .5118 .4747 .4724

MS 0.630 .5210 .6384 .5677

SMS 0.540 .4570 .4109 .3660

W-Z 0.500∗∗ .4364 .4383 .4624

n=1000 to 2000 Asy. Var. Ratio Var. Ratio Var. Ratio Var. Ratio

W-Z 0.500∗∗ .5111 .4894 .5116

∗ : L =logistic, U =uniform, T3 =student’s t with 3 degrees of freedom. 2 explanatory
variables, 1000 replications.
∗∗ : we expect that the proposed estimator to be

√
n−consistent.

Table 3: Comparisons among the Klein-Spady (K-S), W-Z and Probit estimators.

Estimator Bias(β1) Var(β1) Rel. Eff.

K-S -0.00042 0.01532 78%

W-Z 0.003765 0.01357 88%

Probit -0.00013 0.01196 100%
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Table 4: Comparison among various estimators (Cosslett’s designs)

x1, x2 are N(0,1), 1000 trials
Estimator Error 1:N Error 2:M1 Error 3:M2

n=250 Bias RMSE Bias RMSE Bias RMSE
Probit -0.04 0.29 -0.11 0.49 -0.11 0.50
MS -0.22 0.76 -0.34 1.16 -0.36 1.27

MRC -0.05 0.34 -0.11 0.49 -0.11 0.52
SML -0.08 0.43 -0.02 0.67 -0.20 0.70

SML-1 -0.05 0.31 -0.11 0.48 -0.10 0.47
W-Z -0.02 0.29 -0.09 0.48 -0.11 0.53

n=1000 Bias RMSE Bias RMSE Bias RMSE
Probit -0.02 0.13 -0.02 0.20 -0.01 0.21
MS -0.08 0.35 -0.12 0.47 -0.11 0.48

MRC -0.02 0.15 -0.02 0.19 -0.02 0.21
SML -0.03 0.20 -0.04 0.27 -0.04 0.27

SML-1 -0.02 0.14 -0.02 0.19 -0.01 0.19
W-Z -0.004 0.132 -0.006 0.20 -0.01 0.22

x1, x2 are exp(1)− 1, 1000 trials.
Estimator Error 1:N Error 2:M1 Error 3:M2

n=250 Bias RMSE Bias RMSE Bias RMSE
Probit -0.03 0.35 -0.23 0.72 -0.69 1.24
MS -0.37 1.29 -0.51 1.87 -0.55 1.64

MRC -0.05 0.43 -0.13 0.71 -0.27 1.32
SML -0.10 0.53 -0.23 0.84 -0.29 1.01

SML-1 -0.06 0.39 -0.23 0.73 -0.43 1.38
W-Z -0.05 0.36 -0.25 0.76 -0.07 0.59

n=1000 Bias RMSE Bias RMSE Bias RMSE
Probit -0.01 0.17 -0.16 0.34 -0.57 0.70
MS -0.11 0.47 -0.16 0.59 -0.16 0.66

MRC -0.02 0.19 -0.03 0.26 -0.05 0.34
SML -0.03 0.25 -0.06 0.35 -0.07 0.40

SML-1 -0.03 0.19 -0.09 0.28 -0.16 0.35
W-Z -0.02 0.16 -0.09 0.29 -0.01 0.27
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TABLE 5: Comparison of the Logit and W-Z estimators∗ (nonrandom design, 8
explanatory variables.)

Estimator VAR(β̂0) Bias(β̂0) VAR(β̂2) Bias(β̂2) VAR(β̂3) Bias(β̂3) VAR(β̂4)

Logit (n = 1K) .1192 -.0291 .0293 .0171 .0566 .0231 .0169

W-Z (n = 1K) .11884 -.0089 .02952 .0120 .05687 .0194 .01689

W-Z (n = 2K) .06188 .0013 .01568 .0059 .02615 .0065 .00694

Bias(β̂4) VAR(β̂5) Bias(β̂5) VAR(β̂6) Bias(β̂6) VAR(β̂7) Bias(β̂7) VAR(β̂8) Bias(β̂8)

-.0125 .1282 .0171 .0486 .0258 .0452 .0303 .0058 -.0084

-.0096 .12613 .0080 .04864 .0207 .04773 .0181 .00593 -.0064

-.0022 .05363 .0051 .01897 -.0008 .02234 .0095 .00242 -.0037

∗ : ε ∼ N(0, 2), 8 explanatory variables, 1000 observations. The explanatory variables
are generated once. The random errors are generated 1000 times. β1 is normalized to
be 1.

Table 6: Computing times of the W-Z estimator.

sample size n=500 n=1000

Two explanatory variables 6.9 sec 14.5 sec

Eight explanatory variables 8.9 sec 18.9 sec

TABLE 7: Bootstrap estimate for the variance of the W-Z estimator∗ (nonrandom
design, 8 explanatory variables).

Estimator VAR(β̂0) VAR(β̂2) VAR(β̂3) VAR(β̂4)

W-Z .0909 .0197 .0536 .0123

Estimator VAR(β̂5) VAR(β̂6) VAR(β̂7) VAR(β̂8)

W-Z .1388 .0398 .0395 .0055

∗ : ε ∼ N(0, 2), 8 explanatory variables, 1000 observations, 1000 resamplings.

21


